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ABSTRACT With the rapid development of smart grid, the penetration of renewable energy resources
is higher than ever and keeps growing. However, the output of renewable energy units, such as solar
photovoltaics and wind turbines, is characterized by sudden and unpredictable changes. This paper proposes
a novel electrical peak demand curtailment allocation (DCA) method to manage demand-side resources in
response to fluctuations in renewable energy outputs. The proposed DCA method can curtail end-use loads
faster than traditional demand response (DR) programs and prevent under frequency load shedding (UFLS)
operation when facing sudden and unpredictable outputs of renewable energy. This DCA method considers
DR potential and load curtailment priority. Case studies are conducted to demonstrate how the developed
DCA method can be implemented to mitigate fluctuation in renewable outputs by curtailing electrical
demand, considering communication network latency. This paper also evaluates the impact of applying
different cybersecurity encryption methods on DCA operation. The simulation results prove that the
developed DCA method can mitigate the impact of renewable energy fluctuation and respond fast enough to
avoid traditional UFLS operation.

INDEX TERMS Renewable mitigation, demand curtailment allocation, communication networks,
cybersecurity, latency.

I. INTRODUCTION
This High penetration of renewable energy resources makes
grid operation a challenging task. It is difficult to keep the
balance between supply and demand for electricity with
highly fluctuated renewable energy output. Thus, mitigat-
ing renewable impacts draws lots of attention. In addition
to the use of battery energy storage to mitigate renewable
energy variability, several methods are being deployed to
manage demand-side resources, such as various types of
DR programs, or to shed the load under emergencies, such
as UFLS.Managing demand-side resources with the presence
of renewables is the topic of interest of this paper.

Without high renewable penetration, the current practice
to alleviate power system stress conditions in hot sum-
mer days is to implement DR, as peak load days can be
predicted in advance. As a result, electric utilities in the

U.S. have introduced diverse types of DR programs – both
time-based DR and incentive-based DR programs [1], [2].
Time-based DR programs are achieved in response to elec-
tricity prices, which are usually announced one day ahead.
For example, DR programs offered by California Indepen-
dent System Operator (CAISO) [3] are triggered based on
various conditions, such as day-ahead forecasted temper-
ature, day-ahead forecasted demand and high price fore-
casts. One popular incentive-based DR program, known
as an emergency demand response program (EDRP), can
alleviate power system stress conditions by reducing load
at customer premises. EDRP usually needs an advance
notice of at least two hours. As introduced in [4] and [5],
New York Independent System Operator (NYISO)’s
EDRP requires day-ahead or two-hour ahead for advance
notification.
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However, with the increasing penetration of renewable
energy sources, the sudden loss of renewable energy out-
put may lead to insufficient generation to keep up with the
demand for electricity in certain periods. Since DR pro-
gram requires at least two hours for customer notification,
traditional DR implementation is not a suitable means to
mitigate fluctuation in renewable energy sources. Typically,
in an event where there is a sharp decrease of renewable
energy, causing a significant drop in power system frequency,
UFLS is activated to curtail part of system load fast enough to
mitigate renewable impacts on power system (e.g., to recover
the system frequency back to its nominal value). Usually, its
response time is within a fraction of a second. Despite the
fact that UFLS can curtail a large number of loads within a
very short period of time, it comes at the cost of large load
lost [6], [7]. As a result, UFLS should be deployed as the
last resource when facing a sudden and significant drop in
renewables.

To fill the gap of traditional DR and UFLS programs,
researchers [8]–[11] have proposed methods to mitigate
renewable penetration and keep the system operating within
its normal frequency range. In [8], a strategy for supporting
high penetration of renewable generation via implementa-
tion of real-time electricity pricing and demand response is
introduced. A frequency regulation control strategy for wind-
power generation system with flywheel energy storage unit is
presented in [9]. Ma and Chowdhury [10] also consider wind
power generators for the frequency regulation by applying
combined control strategy. A novel DCA method – which
is an expert-based demand curtailment allocation approach
using Analytic Hierarchy Process (AHP) method that has
the ability to respond faster than DR programs and avoid
UFLS operation – is introduced in [11]. This paper extends
the application of DCA method previously proposed by
authors to mitigate fluctuation of large-scale renewable out-
put with the presence of communication and cyber security
limitations.

All above DR programs and other renewable mitigation
solutions rely on two-way communication networks to deliver
end-user usage information and DR signals from the system
operator. Besides, to protect end-user customers’ privacy and
to provide a fast and stable communication, a secure and reli-
able communication network is necessary. Applying cyberse-
curity technologies, such as encryption methods, to prevent
adversary attacks can protect customers’ privacy and allow
the smart grid to operate reliably. Nonetheless, implementing
encryption methods requires extra software and hardware,
which increases the complexity of the system and extends
the system latency. Therefore, it is necessary to analyze the
limitation of using encryption methods on the smart grid
operation.

Hence, the contribution of this paper – in addition to
extending the application of DCA method to mitigate renew-
able fluctuation – also includes evaluating the capability of
a communication network to support smart grid applications

and analyzing limitations of implementing different encryp-
tion methods on the DCA strategy operation. This is to prove
that the operation of the DCA can function quickly enough
to avoid the operation of UFLS considering the background
communication traffic from popular smart grid applications
that share the same network.

II. THE DCA ALGORITHM
In this section, the DCA algorithm is discussed. The
DCA algorithm was originally developed by the current
authors [11] to allocate demand curtailments (MW) among
distribution substations (DS) in an electric utility service area.
Its application is extended in this paper to mitigate the impact
of high renewable energy penetration levels.

DCA is quantified considering DR potential and load cur-
tailment priority of each DS, which can be determined using
DS loading level, the capacity of each DS, customer types
and load categories (deployable, interruptible or critical).
AHP is used to model a complex decision-making process
according to expert inputs and objective parameters. The
DCA algorithm is briefly described below. Interested readers
are encouraged to refer to [11] for the detailed discussion of
the DCA algorithm.

A. DCA ALGORITHM
The DCA algorithm starts by retrieving the information at
each DS every fixed time interval, e.g., 15 minutes. The
information to be retrieved includes DS capacity, load (MW)
by category (i.e., residential/commercial), load (MW) by
classification (i.e., deferrable/interruptible/ critical) and fore-
casted loading level of each DS. It is assumed that a demand
curtailment request (MW) is sent from an ISO/RTO. Once
a curtailment request is received, the first-step curtailment
process is initiated.

The first-step curtailment process starts by comparing
the requested demand curtailment amount (MW) with the
total amount of all deferrable and interruptible loads in the
curtailment-requested service area, which can span multi-
ple DSs. If the requested amount is equal or larger than the
sum of deferrable and interruptible loads, all deferrable and
interruptible loads will be curtailed first, and the balance will
come from demand response at the customer level.

The second-step curtailment process will be initiated:
(1) to manage the remaining curtailment requested amount;
or (2) to manage the original curtailment requested an amount
that is less than deferrable loads. This step is to allo-
cate the (remaining) requested demand curtailment amount
among different DSs based on their curtailment priority
factor, which is determined using 3-level AHP depicted in
Figure. 1. Outcomes of AHP are curtailment allocation to
each DS. If the curtailment amount allocated to a particular
DS is larger than its sum of deferrable and interruptible loads,
the curtailment contribution of that particular DS will be set
equal to its sum of deferrable and interruptible loads; and the
remaining amount will be reallocated to other DSs.
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FIGURE 1. Three-level AHP structure.

B. DETERMINATION OF CURTAILMENT PRIORITY FACTOR
A 3-level AHP method is used to determine the curtailment
percentage of each DS. Decision criteria have three levels
as explained below and the detailed relationship is shown
in Figure. 1.

The 1st-level criteria involve three distinct groups of
experts’ judgments, representing the weight of their opinions.
In this study, experts are from customer relation department,
system operators/dispatchers, and utility commission staff.
Note that in using the AHP method, relative importance –
as given by various experts – is used as opposed to their
absolute judgments. Thus, the unlikely off-scale remark by
one expert will not skew results. The 2nd-level criteria are
criteria related to each DS, including DS loading condition,
load classification and customer type factor.

The 3rd-level criteria expand the above criteria as follows:
(i) DS loading condition including DS loading ratio and
its capacity; (ii) DS load classification including critical/
deferrable and interruptible loads; and (iii) Customer type
factor (CTF) are used to present the importance of DS’s cus-
tomers in different time periods. Deferrable loads are those
that can be deferred from peak hours and can be deployed
any time during off-peak hours. Interruptible loads are those
that can be interrupted momentarily. Load compensation may
be necessary as soon as a DR event ends. Critical loads
are those that are non-deferrable and non-interruptible. This
paper considers both residential and commercial customers
for demand curtailment allocation.

III. THE STRATEGY OF OPERATION, COMMUNICATION
NETWORKS AND ENCRYPTION FOR
DCA IMPLEMENTATION
This section discusses the strategy of DCA operation, com-
munication networks and encryption methods which were
implemented to evaluate the developed DCA algorithm.

A. THE STRATEGY OF DCA OPERATION
The smart grid involves many different applications. In the
proposed framework, the smart grid operation status is

classified into Normal, Demand Response (DR) event,
Demand Curtailment Allocation Strategy (DC) event and
Emergency (E) event. The DCA algorithm is activated when
a traditional DR program cannot fulfill the demand curtail-
ment request either the operation time left is insufficient
(e.g., shorter than two hours) or a DR event cannot provide
enough curtailment to keep the systemwithin its normal oper-
ation. UFLS only operates when DCA cannot fully handle
the curtailment request. The transition among these statues is
shown in Figure. 2.

FIGURE 2. Power grid operation status.

FIGURE 3. The operation of the DCA.

The DCA operation process is depicted in Figure. 3. Dur-
ing a power system normal operating condition, the sys-
tem load is served by both traditional and renewable energy
(e.g., PV) power plants. A central control center continuously
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monitors the system frequency. Once the frequency is out
of its normal operation range, specific actions are taken.
As shown in Figure. 3, load curtailment is initiated using
the DCA method if the system frequency decreases below
a certain threshold. In case the DCA operation cannot help
maintaining nominal system operating frequency, peaking
power plants are used to supplement DCA operation.

B. COMMUNICATION NETWORKS FOR DCA
DR implementation requires two-way communications
between the control center and end-user customers. That is,
it needs data from end-use customers to make a decision; and
once the decision is made, the decision needs to be commu-
nicated back to end-use customers. Achieving two-way com-
munications requires the following steps: (1) the information
from end-use customers collected by smart meters is sent to a
local data concentrator; (2) a local data concentrator forwards
the information to a base station; (3) the base station packages
the information and sends to the control center; and (4) the
decision from the control center is sent to end-use customers
in a reverse direction.

To realize this two-way communication, three layers of
smart grid communication networks (i.e., WAN-wide area
network, NAN-neighborhood area network and premise area
network) are necessary. While WAN facilitates informa-
tion exchange between the control center and base stations,
NAN allows information exchange between base stations
and end-user customers through local data concentrators.
The premise area network facilitates the control of smart
appliances inside smart home/buildings.

Among different smart grid infrastructures, the advanced
metering infrastructure (AMI) has potential to enable demand
response implementation as it covers both WAN and NAN
and includes necessary building blocks, such as base stations,
local data concentrators, etc. Therefore, the communication
network supporting AMI applications is used as a basis to
simulate DR implementation in this paper. On the other hand,
within a home, a HEM (home energy management) system is
widely used to enable automated DR applications at the cus-
tomer premise. A HEM can provide the homeowner/building
operator the ability to automatically perform smart load con-
trols based on utility signals, as well as customer preference
and load priority.

The whole network structure for DCA implementation is
shown in Figure. 4.

FIGURE 4. The network structure for DCA implementation.

As shown in (1), the latency (Ti) for transmitting a com-
mand within any network comprises: the communication

delay (Ticomm) and the DCA algorithm processing
delay (TiDCA). According to Figure. 4, T1, T2 and T3 rep-
resent the latency in the WAN, NAN and HAN networks,
respectively.

Ti = TiDCA + Ticomm (1)

The communication delay (Ticomm) can be further divided
into: transmission delay (Titran), propagation delay (Tiprop)
and processing delay (Tiproc). See (2).

Ticomm = Titran + Tiprop + Tiproc (2)

Hence, the overall network latency (Ttotal) is calculated by
adding the latency of all three network layers, i.e., WAN,
NAN and LAN, as shown in (3).

Ttotal =
3∑
i=1

Ti (3)

C. ENCRYPTION METHODS FOR THE
PROPOSED DCA STRATEGY
Data Encryption Standard (DES), Triple DES (3DES),
Advanced Encryption Standard (AES), Rivest-Shamir-
Adleman (RSA) and Blowfish are five popular encryption
methods. Since the DES method is not secure [12] and the
RSA method has slow performance [13], this paper focuses
on analyzing how: 3DES, AES and Blowfish impact DCA
operation in terms of additional processing and transmission
delays caused by implementing these encryption methods on
the DCA strategy.

All three encryption methods are block-cipher which oper-
ates on a fixed length (block size) string of bits. Key size is
the number of bits in a key used by the encryption method.
The parameters for each type of these encryption methods are
listed in Table 1.

TABLE 1. Parameters of encryption methods.

IV. CASE STUDY ASSUMPTIONS AND DESCRIPTION
Case studies are demonstrated to compare the performance of
the developed DCA strategy in mitigating renewable energy
fluctuation, that operates on an AMI network using three
different encryptionmethods. The IEEE 14-bus systemmodel
is simulated in the PowerWorld simulator.

A. POWER SYSTEM ASSUMPTIONS
Assumption 1 (Power Network): The IEEE 14-bus system

model used for this simulation study is shown in Figure. 5.
This system consists of five synchronous machines, three of
which are synchronous compensators used only for reactive
power support. There are 11 load points in the system totaling
259 MW and 81.3 MVAR. Its normal operating frequency is
at 60 Hz.
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FIGURE 5. The IEEE 14-bus system model.

Assumption 2 (Fossil Fuel Ramp Rate): The average
ramp rate of a generator is defined as the change in load
served divided by the amount of time required to move
from the initial load to the final load. Ramp rates of
most industrial frame gas turbine models are advertised as
10 MW/minute up to 100 MW/minute, with an average of
about 25 MW/minute [14]. For example, GE 7F.05 gas tur-
bine’s ramp rate is 40 MW/minute. GE 7FA gas turbine’s
ramp rate is 30 MW/minute [15]. Siemens SGT6-5000F
gas turbine’s ramp rate is up to 40 MW/minute [16] and
Siemens H class CCGT (combined-cycle gas turbine) ramp
rate is 25 MW/minute [17]. Ramp rates of traditional gener-
ation (coal/steam) of different unit sizes (76, 155, 350MW)
vary from 2 to 4 MW/minute [18]. Based on the size of
generation in IEEE 14-bus system, the ramp down rate of
coal/steam units is assumed at 3.5 MW/minute. The gas
turbine is used as backup generation and its ramp rate is
assumed at 25 MW/minute.
Assumption 3 (Power System Frequency Response):

a) Western Electricity Coordinating Council (WECC) Cate-
gory B/C Standard

WECC is geographically the largest and most diverse of
the eight regional entities with delegated authority from the
North American Electric Reliability Corporation (NERC)
and Federal Energy Regulatory Commission (FERC). It pro-
vides an environment for the development of reliability
standards. WECC Category B Frequency monitors all load
buses for a frequency dip below 59.6 Hz for a duration of
0.1 seconds (6 cycles) [19]. Similarly, WECC Category C
Frequency monitors all load buses for a frequency dip below
59.0 Hz for a duration of 0.1 seconds (6 cycles) [20].

In this study, the proposed DCA method is triggered when
the grid frequency falls into the WECC Category B Fre-
quency monitoring condition. If the DCA is not able to draw
the frequency back to its normal range and the frequency
drops into the WECC Category C Frequency monitoring
condition, the UFLC program is triggered.

b) Frequency Response
Power system frequency is a continuously changing vari-

able, and it is determined and controlled by the balance
between system demand and total supply. The frequency
falls when the demand is greater than the supply. To keep
the system’s frequency within its normal operating lim-
its, it is necessary to be aware of the system’s frequency
response (MW/0.1 Hz). Frequency response is a measure
of a system’s ability to stabilize frequency immediately fol-
lowing the sudden loss of generation or load. It is defined
as the sum of the change in demand and the change in
generation, divided by the change in frequency, expressed
in MW/0.1 Hz [21]. In practice, the amount of frequency
decline depends on characteristics of the load and generators
available at the time [22]. Quantifying the frequency response
of a system is typically accomplished by observing frequency
decline events. For example, the NERC Resources Subcom-
mittee occasionally requests Frequency Response Character-
istic Surveys for specific events [19].

To estimate the frequency response ratio of the IEEE
14-bus system model used in this section, several frequency
decline cases are simulated. For example, the frequency of
the system decreases from 60 Hz to 58.5 Hz when the load
increased 40 MW. Using (4), the IEEE 14-bus system’s
frequency response is determined at 27.1 MW/0.1 Hz.

kp = −(
f1 − f0
L1 − L0

) (4)

B. LOAD AND RENEWABLE ENERGY ASSUMPTIONS
Assumption 1 (Load profile): The load data used in case

studies are derived from distribution feeders in a service area
of an electric utility in Virginia. The data is available at
one-minute intervals, and the day selected for the case study
is a typical summer day in August. The system load is scaled
up so that its peak is 259 MW, which is the steady state load
value of the IEEE 14-bus system. The derived load data for a
typical summer day on IEEE 14-bus system is also shown in
Figure. 6.

FIGURE 6. The load (MW) of a typical summer day.

Assumption 2 (PV output): The solar PV output used in
this study is derived based on the data from the 6.4kW solar
PV station located on the rooftop of Virginia Tech Research
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FIGURE 7. The solar power (W) output.

TABLE 2. Characteristics of selected smart grid applications.

Center in Arlington, VA, which is available 15-second inter-
vals. An example of the 15-second PV power output between
5:30 am and 9:30 pm is shown in Figure.7.

In the case study, the PV unit is assumed to be located
at Bus 2 of the power system in Figure. 5. The size of PV
unit is scaled up in the case study to study the impact of
different PV penetration levels on DCA operation. The PV
sizing assumption is discussed below.
Assumption 3 (PV penetration Level): In this study, the PV

penetration level (PVpene) is defined as the ratio of total peak
power generated by PV panels (Ppv) to the peak load apparent
power on the feeder (Pload ). See (5).

PVpene =
Ppv
Pload

(5)

This study looks at various PV penetration levels,
i.e., 10% and 20% and analyzes how the DCA method is
capable of mitigating the impact of different PV penetration
levels.

C. SMART GRID APPLICATIONS
Since many smart grid applications share the same communi-
cation network, and each smart grid application has distinc-
tive characteristics, e.g., data size, data sampling frequency,
latency and reliability requirements, it is necessary to ensure
proper operation of all smart grid applications especially
those sharing the same network. Characteristics of the pro-
posed DCA method, as well as those of other popular smart
grid applications, are summarized in Table 2.

DR allows a utility to talk to devices at customer premises.
Pricing applications involve broadcasting of price informa-
tion to meters and devices. Meter reading allows a utility to
collect data from electric/gas/water meters and transfer data

to a central database for billing and analysis. Two kinds of
metering applications are considered: (1) on-demand meter
reading and (2) meter reading with scheduled time inter-
vals (15-minute or hours). Electric transportation applications
involve both electricity flow from vehicles to the power grid
(vehicle-to-grid, V2G) and electricity flow from the power
grid to vehicles (grid-to-vehicle, G2V).

V. ANALYZING DELAYS FROM COMMUNICATION
NETWORKS, DCA ALGORITHM AND
ENCRYPTION SECURITY
This section describes communication network simulation
using OPNET network simulator to derive communica-
tion delays in WAN, NAN and HAN when implementing
DCA strategy. It also summarizes DCA algorithm delay and
discusses encryption security delay.

A. COMMUNICATION DELAY
1) COMMUNICATION DELAY IN WAN AND NAN
Since the DCA strategy is mainly implemented in NAN
and WAN, this section discusses network components and
structures that support its implementation and their corre-
sponding communication delay.

FIGURE 8. Communication networks supporting smart grid applications.

The network as shown in Figure. 8 illustrates the commu-
nication network structure that supports the AMI application.
Supporting a large number of smart meters and field devices,
network components including several data concentrators,
base stations and a control center. AMI network has two
major parts. One is the AMI backbone network, i.e., commu-
nications between the control center and base stations. The
other is the AMI smart meter network, i.e., communications
among base stations, data concentrators and smart meters.

Based on the survey of communication schemes deployed
in real-world AMI projects presented in [23], the fiber optic
and WiMAX/LTE are the most popular communication tech-
nologies supporting the AMI backbone network. Between
two choices, the fiber optic option has an advantage over the
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WiMAX/LTE option in that it can provide higher bandwidth.
Furthermore, the fiber optic technology can provide higher
reliability level thanWiMAX /LTE during inclement weather
conditions.

For the AMI smart meter network, the 900 MHz mesh
network appears to be the most popular technology choice.
This is because it has good reliability and flexibility per-
formance. In addition, the implementation cost of 900 MHz
mesh network is relatively inexpensive as it can rely on an
existing infrastructure. According to [24], the 900 MHz RF
network’s data rate can be up to 13.5 Mbps. Besides, its
coverage is around 25 miles. For each base station, it allows
300-1000 customers to access.

For the simulation, an AMI network is set up in OPNET,
comprising 15 base stations, 690 data concentrators and
264,000 smart meters as shown in Figure. 9.

FIGURE 9. Simulate AMI networks in OPNET. (a) Fiber optic – WiMAX.
(b) Fiber optic – LTE.

To calculate the latency in the AMI network, it is assumed
that a smart meter and a data concentrator have the same
access speed, shown in (6).

Ttran = Tproc =
Sp • Nc
R

(6)

where:

Sp - the size of the package (bits);
Nc - the number of customers;
R - the data rate (bps).

To calculate the propagation delay (7), the distance
between each access points and the base station is assumed
to be Gaussian distribution. And the propagation speed of the
signal in free space is the same as that of light speed which is
3∗10^8 m/s.

Tprop =
D

Sprop
(7)

where:

D - the distance (m);
Sprop - the propagation speed (m/s).

The worst-case scenario is when the developed DCA func-
tions during the operation of all other smart grid applications.
The worst-case scenario was simulated in OPNET to deter-
mine latency from communication networks, and the results
are summarized in Table 3.

TABLE 3. Latency from communication networks (WAN and NAN).

TABLE 4. Latency from HAN.

TABLE 5. The overall communication delay.

TABLE 6. Processing speed of encryption methods.

2) COMMUNICATION DELAY DUE TO HAN
Load control implementation within a smart home relies on
the HEM system. Communication technologies of interest
include ZigBee,Wi-Fi and Ethernet. These technologies were
simulated in OPNET, assuming that a house has at most
15 devices to monitor and control. Their performance is
compared in terms of latency, as shown in Table 4. The largest
latency is around 0.11s [25].

3) OVERALL COMMUNICATION DELAY
By summing the communication latency in WAN (T1) and
NAN (T2) based on Table 3, and the latency in HAN (T3)
based on Table 4, the overall communication delay can be
obtained. Table 5 shows that the communication latency in
each network is less than 0.1 second. Since multiple test-
ing cases are implemented, only the upbound are provided.
Hence, the overall communication delay of all three networks
is less than 0.3 seconds.

B. DCA ALGORITHM DELAY
The DCA algorithm was set up on one PC with CPU
of 2.4 GHz and 2 GB RAM. The latency of the DCA algo-
rithm progress was measured and it was less than 0.1 second.

C. ENCRYPTION SECURITY DELAY
The processing speed of the encryption method is another
important factor. According to [26], the encryption and
decryption processing speed on a PC with CPU (2.4 GHz and
2 GB RAM) are listed in Table 6.

It is assumed that each information packet has 100 bytes.
For DCA operation, the total data throughput is around
50 Mbits. As a result, at the control center, the encryption
throughput is considered as 50 Mbits. At the data concentra-
tor, the decryption throughput for the received information
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TABLE 7. Processing latency for three encryption methods.

FIGURE 10. Solar PV output in the afternoon of a typical summer day.

from the control center is around 1.08 Mbits. To forward
the information, another encryption processing is needed.
And the encryption throughput is 423∗100 bytes. And the
decryption throughput at home site is around 100 bytes.
The encryption methods’ processing latency is calculated
using (8) and summarized in Table 7.

Tcyber =
P
R

(8)

where:

Tcyber - the latency of encryption or decryption
processing (s);

P - the data throughput (bits);
R - the processing speed of encryption or

decryption (bits/second).

VI. PERFORMANCE OF DCA ALGORITHM TO MITIGATE
RENEWABLE ENERGY FLUCTUATION
Given delays from the communication network, DCA algo-
rithm processing and encryption security discussed in
Section V, this section analyzes the performance of DCA in
mitigating renewable energy fluctuation when three different
encryption methods (3DES, AES and Blowfish) are imple-
mented. Figure. 10 depicts the solar PV output during the
afternoon of a typical summer day.

As shown there are five significant and sudden changes
in solar PV output. Table 8 summarizes these solar power
output changes at two different solar PV penetration levels,
i.e., 10% and 20%, together with the system load (MW) at
the time of sudden PV output changes.

While Events #1, #2, #3 and #4 represent sudden decreases
in solar PV outputs, Event #5 represents a sudden increase
in solar PV output. It can be seen that the drop in PV
output in Event #1 is considered the largest among all five
events in Table 8. That is, the PV output drop at 20% PV
penetration is as high as 15.3% of the coincident system

TABLE 8. Description of solar PV outputs.

FIGURE 11. PV output during Event #1 (10% and 20% penetration levels).

load (36.4MW/238MW). Hence, this study focuses on
Event#1 to explain how the DCA operation can mitigate
sudden PV output changes. Note that in Event #5 the sudden
increase in PV output is handled by gas turbines, not DCA.

A. EVENT #1 @ 13:17:30
Event #1 happened at 13:17:30. Figure. 11 shows the detailed
PV output fluctuation during Event #1 at 10% and 20%
penetration levels. The largest drop in PV output happened
at around t = 166 seconds, showing the PV output dropped
by 18.2 MW to around 6MW (10% penetration) and dropped
by 36.4 MW to around 12 MW (20% penetration).

Figure. 12 illustrates how the system frequency changes
when the DCA with the 3DES encryption method is applied
to handle sudden changes in PV output.

In the case of 10% solar penetration level with 3DES
encryption method (Figure. 12(a)), changes in the system
frequency can be explained as follows:
• At 13:18:30 (t = 60): as the solar output began to drop,
the system frequency decreased from around 60Hz at t=
60 to 59.6Hz at t = 135. During this period, the system
frequency remained within its normal operating limits,
i.e., >59.6Hz.

• At 13:19:45.46 (t = 135.46): the system frequency
decreased below 59.6 Hz. As a result, the DCA
took action and curtailed 10.64 MW of load. At this
point, the system frequency raised and remained higher
than 59.6 Hz.

• At 13:19:26.76 (t = 166.76): since the solar output was
as low as 6 MW, the system frequency sharply dropped
below 59.6 Hz for the second time. The DCA took
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FIGURE 12. Simulation results for Event #1. (a) 3DES & 10% PV.
(b) 3DES & 20% PV.

another curtailment of 10.51 MW load. Then the system
frequency began to increase.

• At 13:20:49 (t = 199): the system frequency increased
to around 60.2 Hz due to the increase in solar output.

• Between 13:20:50 (t= 200) and 13:21:50 (t= 260): the
system frequency had some disturbances since the PV
outputs had several fluctuations.

• After 13:24:00 (t >= 400): the system frequency
became stable.

For the case of 20% solar penetration level with 3DES
encryption method (Figure. 12(b)), changes in the system
frequency can be explained as follows:
• At 13:18:30 (t = 60): as the solar output began to drop,
the system frequency began to decrease from its nomi-
nal value of 60Hz, but still remained within its normal
operating limits (i.e., > 59.6Hz).

• At 13:19:29.73 (t = 119.73): the system frequency
began to decrease below 59.6 Hz. As a result, the DCA
took action and curtailed 10.36 MW of load. After this,
the system frequency became higher than 59.6 Hz.

• Between 13:19:30 (t = 120) and 13:20:50 (t = 200):
there were three disturbances. It was because the solar
outputs had several fluctuations. Since the system fre-
quency was above 59.6 Hz, DCA did not take any
actions.

• At 13:21:10.46 (t = 220.46): since the solar output
was as low as 25 MW, the system frequency dropped

below 59.6 Hz again. The DCA took another curtailment
of 10.09 MW load. The system frequency began to
increase.

• After 13:22:30 (t >= 300): the system frequency was
steady and kept within its normal operating frequency.

Table 9 summarizes the total amount of load curtailment
for Event #1 when three different encryption methods are
used under two different solar penetration levels. Under the
same solar penetration level, the shorter processing time
required by the encryption method implies the lesser amount
of load curtailment is needed. Hence, Table 9 indicates that
the performance of the Blowfishmethod is slightly better than
that of the 3DES and AES methods. Since system frequency
dropped and reached the lower limit (59.6 Hz) faster in the
20% penetration level case, the total load curtailments were
less than that of the 10% case for all encryptionmethods used.

TABLE 9. Load curtailment for event#1.

TABLE 10. Simulation results with 10% PV penetration level.

TABLE 11. Simulation results with 20% PV penetration level.

B. SUMMARY
This section summarizes case studies for all five events with
different encryption methods and two PV penetration levels.
The total amount of load curtailment or the amount of gas
turbine ramping down (for Event #5) for each case study is
summarized in Tables 10 and 11 for the 10% and 20% PV
penetration levels, respectively.

It can be seen from Table 10 and 11 that 10% and 20%
PV penetration level cases have similar load curtailment in
all events. This is because the system frequency in the case
of 20% PV penetration dropped below 59.6 Hz faster than
that in the 10% PV penetration. Hence, the DCA took actions
faster.

In all case studies, with DCA implementation and any of
the encryption method used, the system frequency can be
kept within its normal operating range with the presence of
significant fluctuation in solar energy output. This proofs the
effectiveness of the developed DCA method.

VII. CONCLUSION
In order to provide a remedy to the problem of sudden
drop in renewable energy outputs, this paper proposes an

VOLUME 7, 2019 1387



D. Bian et al.: Mitigating the Impact of Renewable Variability With Demand-Side Resources

expert-based demand curtailment allocation approach, which
is pre-calculated but dynamically readjusted, if needed. It can
curtail end-use loads faster than traditional DR programs
and prevent UFLS operations. The performance of the com-
munication network supporting the DCA implementation is
evaluated to determine how rapidly the proposed strategy can
be implemented. Since a number of smart grid applications
share the same communication network, the performance of
this communication network is also evaluated considering the
simultaneous operation of popular smart grid applications.
Lastly, this paper also analyzes additional processing and
transmission delays caused by implementing selected encryp-
tion methods (3DES, AES and Blowfish encryption methods)
on the proposed demand curtailment allocation strategy.

REFERENCES
[1] (Jun. 2009). A National Assessment of Demand Response Potential:

Demand Response Potential, Staff Report, Federal Energy Regulatory
Commission. Accessed: Dec. 2018. [Online]. Available: http://
www.opower.com/bdrpotential/media/FERC_demand_response_paper.pdf

[2] The Federal Energy Regulatory Commission Staff. (Jun. 17, 2010).
National Action Plan on Demand Response. Accessed: Dec. 2018.
[Online]. Available: http://www.ferc.gov/legal/staff-reports/06-17-10-
demand-response.pdf

[3] CAISO. (Nov. 2007). CAISO Demand Response Resource User Guide.
Accessed: Dec. 2018. [Online]. Available: http://www.caiso.com/
Documents/DemandResponseResourceRelease1UserGuideVersion3_0.pdf

[4] Midwest ISO. (Mar. 2007). Emergency Demand Response in
PJM and the NYISO. Accessed: Dec. 2018. [Online]. Available:
https://www.naesb.org//pdf2/dsmee061807w2.pdf

[5] NYISO. Demand Response. Accessed: Dec. 2018. [Online]. Available:
http://www.nyiso.com/public/webdocs/markets_operations/services/
market_training/workshops_courses/Training_Course_Materials/
NYMOC_MT_ALL_201/Demand_Response.pdf

[6] A. Apostolov. IEEE Guide for Under Frequency Load-Shedding and
Restoration. Accessed: Dec. 2018. [Online]. Available: https://www.
pacw.org/noache/issue/autumn_2008_issue/industry_reports/ieee_power_
systems_relaying_committee.html

[7] NERC. Under Frequency Load Shedding Metric. Accessed:
Dec. 2018. [Online]. Available: http://www.nerc.com/pa/RAPA/ri/Pages/
UnderFrequencyLoadShedding.aspx

[8] R. Wang, Y. Xie, H. Zhang, C. Li, W. Li, and V. Terzija, ‘‘Dynamic
power flow algorithm considering frequency regulation of wind power
generators,’’ IET Renew. Power Gener., vol. 11, no. 8, pp. 1218–1225,
Jun. 2017.

[9] J. Yao, M. Yu, W. Gao, and X. Zeng, ‘‘Frequency regulation control
strategy for PMSG wind-power generation system with flywheel energy
storage unit,’’ IET Renew. Power Gener., vol. 11, no. 8, pp. 1082–1093,
Jun. 2017.

[10] H. T. Ma and B. H. Chowdhury, ‘‘Working towards frequency regulation
with wind plants: Combined control approaches,’’ IET Renew. Power
Gener., vol. 4, no. 4, pp. 308–316, Jul. 2010.

[11] D. Bian, M. Pipattanasomporn, and S. Rahman, ‘‘A human expert-based
approach to electrical peak demand management,’’ IEEE Trans. Power
Del., vol. 30, no. 3, pp. 1119–1127, Jun. 2015.

[12] Encryption Algorithms. Accessed: Dec. 2018. [Online]. Available: http://
www.encryptionanddecryption.com/algorithms/encryption_algorithms.
html

[13] IEEE Standard for Local and Metropolitan Area Networks–Media Access
Control (MAC) Security Amendment 1: Galois Counter Mode-Advanced
Encryption Standard—256 (GCM-AES-256) Cipher Suite, IEEE Stan-
dard 802.1AEbn-2011 (Amendment to IEEE Standard 802.1AE-2006),
Oct. 2011, pp. 1–52.

[14] Combustion Engine vs Gas Turbine: Ramp Rate. Accessed: Dec. 2018.
[Online]. Available: http://www.wartsila.com/energy/learning-center/
technical-comparisons/combustion-engine-vs-gas-turbine-ramp-rate

[15] 7F.05Gas Turbine (60Hz). Accessed: Dec. 2018. [Online]. Available:
https://powergen.gepower.com/products/heavy-duty-gas-turbines/7f-05-
gas-turbine.html

[16] Gas-Turbine-Siemens. Accessed: Dec. 2018. [Online]. Available: http://
www.energy.siemens.com/hq/pool/hq/power-generation/gas-turbines/
downloads/gas-turbines-siemens.pdf

[17] Power Engineering International. Accessed: Dec. 2018. [Online].
Available: http://www.powerengineeringint.com/articles/print/volume-19/
issue-6/features/fast-starts-and-flexibility-let-the-gas-turbine-battle-
commence.html

[18] Active Power Ramp Rate. Accessed: Dec. 2018. [Online]. Available:
http://www.neos-guide.org/sites/default/files/ramp_rates.pdf

[19] NERC. Understand and Calculate Frequency Response. Accessed:
Dec. 2018. [Online]. Available: file:///C:/Users/Desong%
20Bian/Downloads/Understand%20and%20Calculate%20Frequency%
20Response.pdf.pdf

[20] WECC. System Performance TPL_001_WECC_RBP_2. Accessed:
Dec. 2018. [Online]. Available: https://www.wecc.biz/Reliability/
TPL-001-WECC-RBP-2.1.pdf

[21] NERC. Balancing and Frequency Control. [Online]. Available: http://
www.nerc.com/docs/oc/rs/NERC%20Balancing%20and%20Frequency%
20Control%20040520111.pdf

[22] NERC. M-4 Interconnection Frequency Response. Accessed:
Dec. 2018. [Online]. Available: http://www.nerc.com/pa/RAPA/ri/
Pages/InterconnectionFrequencyResponse.aspx

[23] D. Bian, M. Kuzlu, M. Pipattanasomporn and S. Rahman, ‘‘Analysis of
communication schemes for advanced metering infrastructure (AMI),’’
in Proc. IEEE PES Gen. Meeting Conf. Expo., National Harbor, MD, USA,
Jul. 2014, pp. 1–5

[24] Digikey LLC. RFI Information. Accessed: Dec. 2018. [Online]. Available:
http://www.digikey.com/Web%20Export/Supplier%20Content/CurtisInd_
364/PDF/Curtis_FAQ.pdf?redirected=1

[25] D. Bian, M. Kuzlu, M. Pipattanasomporn, and S. Rahman, ‘‘Assessment
of communication technologies for a home energy management system,’’
in Proc. ISGT, Washington, DC, USA, Feb. 2014, pp. 1–5.

[26] D. S. A. Elminaam, H. M. A. Kader, and M. M. Hadhoud. Encryp-
tion Processing Speed. Accessed: Dec. 2018. [Online]. Available:
http://www.ibimapublishing.com/journals/CIBIMA/volume8/v8n8.pdf

DESONG BIAN (S’12–M’17) received the
B.S. degree from the Department of Electrical
and Computer Engineering, Tongji University,
Shanghai, China, in 2007, theM.S. degree from the
Department of Electrical and Computer Engineer-
ing, University of Florida, Gainesville, FL, USA,
in 2011, and the Ph.D. degree from the School
of Electrical and Computer Engineering, Virginia
Tech, Arlington, VA,USA, in 2016. He is currently
an Engineer with GEIRI North America, San Jose,

CA, USA. His research interests include PMU-related applications, demand
response, and communication network for smart grid.

DI SHI (M’12–SM’17) received the B.S. degree in
electrical engineering fromXi’an Jiaotong Univer-
sity, Xi’an, China, in 2007, and the M.S. and Ph.D.
degrees in electrical engineering from Arizona
State University, Tempe, AZ, USA, in 2009 and
2012, respectively. He currently leads the PMU &
System Analytics Group, GEIRI North America,
San Jose, CA, USA. His research interests include
WAMS, energy storage systems, and renew-
able integration. He is an Editor of the IEEE
TRANSACTIONS ON SMART GRID.

1388 VOLUME 7, 2019



D. Bian et al.: Mitigating the Impact of Renewable Variability With Demand-Side Resources

MANISA PIPATTANASOMPORN (S’01–M’06–
SM’11) received the Ph.D. degree in electrical
engineering from Virginia Polytechnic Institute
and State University, Blacksburg, VA, USA,
in 2004. She joined the Department of Electrical
and Computer Engineering, Virginia Polytechnic
Institute and State University, as an Assistant Pro-
fessor, in 2006. She manages multiple research
grants from the U.S. National Science Foundation,
the U.S. Department of Defense, and the U.S.

Department of Energy, on research topics related to smart grid, microgrid,
energy efficiency, load control, renewable energy, and electric vehicles.
Her research interests include renewable energy systems, energy efficiency,
distributed energy resources, and the smart grid.

MURAT KUZLU (M’11–SM’15) joined Old
Dominion University, in 2017, as an Assistant
Professor. In 2011, he joined Virginia Tech’s
Advanced Research Institute, Arlington, as a
Post-Doctoral Fellow. From 2005 to 2006, he was
a Global Network Product Support Engineer with
Nortel Networks, Turkey. In 2006, he joined the
Energy Institute, TUBITAK-MAM, Turkey, as a
Senior Researcher. His research interests include
smart grid, demand response, smart metering

systems, wireless communication, and embedded systems.

SAIFUR RAHMAN (S’75–M’78–SM’83–F’98)
is the Director of the Advanced Research Insti-
tute, Virginia Polytechnic Institute and State Uni-
versity, Blacksburg, VA, USA, where he is the
Joseph Loring Professor of electrical and computer
engineering and also directs the Center for Energy
and the Global Environment. He served as the
Vice President of the IEEE Publications Board and
as a member of the IEEE Board of Governors,
in 2006. He is a Distinguished Lecturer of the

IEEE Power and Energy Society. He has published in the areas of smart
grid, conventional and renewable energy systems, load forecasting, uncer-
tainty evaluation, and infrastructure planning. From 1996 to 1999, he was
a Program Director in the engineering directorate of the National Science
Foundation. From 2009 to 2013, he served as a Vice President of the IEEE
Power and Energy Society and as a member of its Governing Board. He is
a Member-at-Large of the IEEE-USA Energy Policy Committee. He is the
Editor-in-Chief of the IEEE Electrification Magazine.

VOLUME 7, 2019 1389


	INTRODUCTION
	THE DCA ALGORITHM
	DCA ALGORITHM
	DETERMINATION OF CURTAILMENT PRIORITY FACTOR

	THE STRATEGY OF OPERATION, COMMUNICATION NETWORKS AND ENCRYPTION FOR DCA IMPLEMENTATION
	THE STRATEGY OF DCA OPERATION
	COMMUNICATION NETWORKS FOR DCA
	ENCRYPTION METHODS FOR THE PROPOSED DCA STRATEGY

	CASE STUDY ASSUMPTIONS AND DESCRIPTION
	POWER SYSTEM ASSUMPTIONS
	LOAD AND RENEWABLE ENERGY ASSUMPTIONS
	SMART GRID APPLICATIONS

	ANALYZING DELAYS FROM COMMUNICATION NETWORKS, DCA ALGORITHM AND ENCRYPTION SECURITY
	COMMUNICATION DELAY
	COMMUNICATION DELAY IN WAN AND NAN
	COMMUNICATION DELAY DUE TO HAN
	OVERALL COMMUNICATION DELAY

	DCA ALGORITHM DELAY
	ENCRYPTION SECURITY DELAY

	PERFORMANCE OF DCA ALGORITHM TO MITIGATE RENEWABLE ENERGY FLUCTUATION
	EVENT #1 @ 13:17:30
	SUMMARY

	CONCLUSION
	REFERENCES
	Biographies
	DESONG BIAN
	DI SHI
	MANISA PIPATTANASOMPORN
	MURAT KUZLU
	SAIFUR RAHMAN


