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H I G H L I G H T S

• Proposed an indoor temperature prediction algorithm using coarse-grained thermostat data.

• Designed a software solution for RTU coordinated control during a DR event.

• Tested algorithm in a real-world office building, showing effective peak load reduction.
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A B S T R A C T

With the advent of the smart grid, demand response (DR) has been implemented in many electric utility control
areas to reduce peak demand in buildings during grid stress conditions. However, small- and medium-sized
commercial buildings typically do not deploy a building energy management (BEM) system due to high costs of
commercially available solutions. Thus, their participation in DR events implies manual control and shutting
down major building loads (e.g., air conditioning systems) without considering occupant comfort. With rapid
development of Internet of Things (IoT) technologies, some cost-effective IoT-based BEM systems have become
available. Based on such systems, this paper presents an algorithm to automatically coordinate the operation of
rooftop units (RTUs) in small- and medium-sized commercial buildings, thereby meeting the specified power
limit (kW) during a DR event while taking into account occupant comfort. The proposed algorithm has been
designed to intelligently learn building thermal properties using coarse-grained indoor temperature data from
thermostats, thus avoiding the deployment of sophisticated sensors network. A mixed-integer linear program-
ming model has been utilized to determine an optimal RTU control strategy during a DR event. The peak load
shedding performance of the proposed strategy has been tested in an office building in Blacksburg, VA, USA. The
experimental result demonstrates that the building could achieve the required peak load reduction and the
computation time required by the proposed algorithm is less than 5 min. This implies that with the proposed
algorithm a building is capable of responding to a DR signal with a short notice, providing valuable demand-side
resources for electricity capacity and ancillary markets.

1. Introduction

Buildings use around 40% of the total energy consumption world-
wide [1] and consume over 70% of the total electricity usage in the U.S.
[2]. As the major consumer of electricity, buildings have potential to
provide energy savings and relieve stress on electric power grids during
peak hours. Many studies have been conducted in recent years on this
topic. Authors in [3,4] propose a multi-agent control platform that
learns from occupant feedbacks to increase building energy efficiency
while guaranteeing indoor comfort. A similar system is proposed in [5]
using fuzzy control and a multi-objective genetic algorithm. Authors in

[6] introduces a BEM system based on two-stage optimization capable
of optimal scheduling of building appliances. A peak load reduction
system based on model predictive control and real-time pricing is
presented in [7]. Among various appliances in the buildings, HVAC
systems usually consume over 30% of the total building electricity
usage [8] and their reactive power usage is directly related to power
grid voltage stability. Therefore, HVAC systems are the major loads in
buildings to be controlled. Research in [9] quantifies energy savings
based on different HVAC set points. A centralized heating system con-
trol approach to make building demand responsive is studied in [10].
Authors in [11] demonstrate peak cooling demand shifting with the
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help of building photovoltaic and thermal storage systems. Instead of
using global set point adjustment, a computing tool is proposed in [12]
to optimally control set points of each thermal zone during a peak-load
reduction event. Authors in [13] propose a fast chiller control strategy
to enable buildings to participate in electricity ancillary services [14]
and providing a spinning reserve to the smart grid [15]. Another work
targeting large commercial HVAC control for participating in fast de-
mand response is presented in [16].

Not only in academia, electric utilities and third party demand ag-
gregators show tremendous interest in the involvement of buildings in
grid load balance. Many demand response (DR) programs have been
introduced to encourage peak load reduction in buildings during cri-
tical times [17–20]. These incentive-based DR programs usually require
a customer to sign a contract to maintain the building’s power demand
below a certain kilowatt (kW) limit during a DR event in exchange of
financial benefits. However, by studying the non-domestic sector of the
short term operating reserve (STOR) market in the U.K., authors in [21]
point out that the challenges for involving more end users to participate
in demand reduction are: (1) the short response time (as short as
5–10 min) to generate an effective response scheme and (2) the concern
for compromising occupants’ comfort. Because of these unresolved
challenges, authors in [21] reveal that only a small portion of end users
are willing to participate in the load reduction DR program. This im-
plies that for a building to actively participate in a DR event, a control
system that can response quickly and automatically and considering
occupant comfort is required.

While large modern commercial buildings equipped with sophisti-
cated building energy management (BEM) systems usually are able to
achieve an automatic control, smaller buildings (less than 50,000
square feet), which constitute majority of buildings (i.e., more than
90% of commercial buildings in the U.S.), mostly do not have such
automation systems [22]. The main reason is the prohibitive price for
designing, programing and deploying an automatic energy manage-
ment system. According to [23], a basic BEM is costly with an average
price of $2.50 (U.S. Dollar) per square foot and this number can be as
high as $7, not to mention a hefty annual maintenance expenditure of
about 10–15% of the initial cost. The high cost of a traditional BEM
system means return on investment is a challenge for all, but large
buildings. To solve this problem, with fast development in the area of
Internet of Things (IoT), many IoT-based BEMs enabled by IoT-based
smart devices are emerging as cost-effective solutions to those building
owners. Capable of providing controllability, system awareness and
intelligent controls (see Fig. 1), they are gaining popularity for their
low-cost, flexibility and scalability features among small- and medium-
sized buildings. An example of such an IoT-based solution is the U.S.
Department of Energy-sponsored Building Energy Management Open
Source Software (BEMOSS) [24–26].

However, as of today, most of the IoT-based BEMs are focusing on
controllability and monitoring, the intelligent applications are not well-

developed, such as DR implementation. To implement DR, power
consumption in buildings can be reduced by turning off unnecessary
lightings and plug loads, but the control of HVAC systems is not
straightforward and might need some decision making assistance. Since
most small- and medium-sized buildings use rooftop units (RTUs), the
coordination of multiple RTUs can be an effective approach for load
reduction in such buildings.

Nevertheless, reducing HVAC power consumption in a building
during critical periods, usually hot summer days, will inevitably impact
occupants’ thermal comfort. Thus, a good indoor temperature predic-
tion will facilitate the HVAC control to minimize any occupants’
thermal discomfort in a building. Time series and neural network
methods are widely used in such predictions [27–33]. Authors in [27]
predicts the thermal behavior of an open office using both linear
parametric and neural network-based nonlinear autoregressive models.
A similar study using an autoregressive model is discussed in [28].
Authors in [30] compare the performance of four different models to
predict building thermal behaviors. However, existing work depends
heavily on sensor inputs, which causes extra investment for building
owners to establish the sensor network. For example, CO2 and occu-
pancy sensors are needed to measure the building occupancy level,
while door/window sensors are needed to examine the open/close
status of windows and doors. To tackle this issue, authors in [31–33]
propose approaches for multiple RTU coordination using minimal
number of hardware. Authors in [33] specify a fixed number of RTUs
that are allowed to operate at the same time. However, by limiting the
number of operating RTUs, a building might not be able to fully utilize
the allowable demand (kW) limit in case the rated power of various
RTU is different from each other. Instead, a power limit should be used
to cap the total RTU power demand to allow greater building operation
efficiency and minimize occupant discomfort. Other studies in the lit-
erature use simulation data or sophisticated sensor data for indoor
temperature prediction model training, which is not applicable with
emerging IoT-based BEM systems. The reason lies in that the indoor
temperature measurement comes from smart thermostats due to the
absence of a sophisticated sensors network in IoT-based BEM systems,
and the measurement granularity of many commercially available
smart thermostats is large. (For example, RadioThermostat: 0.5 °F,
Honeywell: 1 °F and ICM thermostat: 1 °F.) Thus, with such coarse-
grained data, thermal properties that most time-series approaches
trying to capture are lost, and new approach adaptive to these data is
needed.

In all, the literature review shows that in the electric industry, in-
volving more buildings in peak load reduction is highly beneficial,
needed but not well-accomplished. Even though IoT-based BEMs pro-
vide an affordable solution for small- and medium-sized buildings, an
intelligent DR implementation based on this platform is yet to come.
Therefore, the originality of this work is the self-learning algorithm for
coordinated control of multiple RTUs that can be used with the

IoT-based BEM 
Provides
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Over different protocols (ZigBee, Z-wave, BACnet, …)

At flexible location (Over LAN or Internet)

System Awareness

Intelligent Applications

Real time devices status and/or building 
environment monitoring

Operation historical data storage

Support various device types (HVAC, lighting …)

Alarms and notifications (Email, SMS, …)

Energy consumption analytics

Demand response implementation(Information & Decisions)

Fig. 1. Utilities of the IoT-based BEM.
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emerging IoT-based BEM system, thus facilitating rapid DR im-
plementation in commercial buildings. The proposed self-learning al-
gorithm automatically learns the thermal properties of zones to better
consider occupants’ thermal discomfort during a DR event. The value of
this research is the development and validation of a practical and cost-
effective solution to allow more buildings to participate in DR. The
proposed control method is validated by simulations as well as a real-
world building control. The short response time (under 5 min) of the
proposed approach enables rapid load reduction in buildings, providing
valuable demand-side resources for electricity capacity and ancillary
markets under power grid contingencies.

2. Research methodology and system design

To coordinate the RTUs’ operation and meet the power limit (kW)
while considering occupants’ thermal comfort, it is essential to have a
good knowledge of each zone’s thermal behavior. A theoretical study
[34] shows that given the RTU status, the indoor temperature variation
rate can be expressed as a linear function of the indoor temperature at
the previous time step:

≈
−

= + ∀ >−
−

dTemp
dt

Temp Temp
t

k Temp c t
Δ

· ( 1)t t t
t

1
1 (1)

Where the value of k depends on building surface area, material heat
resistance and other thermal properties; c is influenced by factors like
outdoor temperature, instant solar radiation, RTU capacity and status.
These influencing parameters usually are either not readily accessible to
a building manager or additional sensors are required to capture such
information (for real-time solar radiation). Thus, (1) cannot be easily
configured and integrated to an indoor temperature prediction model.

Empirical observation also substantiates that during a short period,
the indoor temperature variation rate can be considered constant. This
is illustrated in Fig. 2, which shows the temperature measurements in a
building under study vary linearly.

In a building, most of the influencing factors mentioned above, such
as the ratio of area of wall and building heat resistance, typically re-
main constant. Therefore, their influences to indoor temperature var-
iation are of a constant pattern and are reflected in the historical data of
building operation. Based on the linear property in (1), an indoor
temperature prediction model is proposed to study the historical data
collected from smart thermostats, locate temperature raising and
dropping periods and learn the temperature variation rate of the
thermal zones. With the temperature variation rate as the re-
presentative of building thermal properties, a coordinated control al-
gorithm utilizes this knowledge to coordinate RTU operation during a
DR event. The RTU coordination strategy is generated using linear
programming to guarantee the computational efficiency. As authors in
[13] point out the sooner a building responds to a DR signal, the more

value it provides to the electric utility.
Overall, the proposed RTU coordinated control is flexibly designed

so that it can be a plug-in application to the BEM system. For small- and
medium-sized buildings, a low cost IoT-based BEM solution can be
deployed, such as the open sourced BEMOSS [24], which is the host of
the proposed algorithm in this study. The proposed algorithm and its
integration with the IoT-based BEM system is illustrated in Fig. 3. It
comprises a learning process and optimization process, fulfilled by a
learning agent and an optimization agent, respectively.

The learning agent utilizes smart thermostats’ historical data pro-
vided by a BEM system to derive parameters for a polynomial regres-
sion model that captures thermal properties of different thermal zones
in a building. The learning process can be carried out at night before
potential DR/critical peak event day. During the DR day, when trig-
gered by the signal, the optimization agent will start a linear pro-
gramming and generate an optimal RTU control strategy which mini-
mizes the overall cost from occupants’ thermal discomfort and energy
consumption while keeping the total RTUs’ power consumption within
a specified power limit. The control strategy will then be sent to BEM
for execution.

The interface between BEM and the proposed algorithm is bilateral.
That is, thermal information about a thermal zone from a BEM system,
including indoor temperature and thermostat state, must be provided to
the algorithm to allow learning of zones’ thermal properties. On the
other hand, the control strategy generated by the algorithm should be
sent for execution by the BEM. In our implementation, the BEM used in
this study, i.e., BEMOSS, saves historical data in a Cassandra database
[35], which has granted open access to the algorithm. When the algo-
rithm sends back control parameters, thermostat agents in BEMOSS
execute corresponding commands.

3. Self-learning indoor temperature prediction model

In this section, a learning algorithm (implemented by the learning
agent) based on a polynomial regression model is introduced for pre-
dicting indoor temperature variation rate, using coarse-grained tem-
perature data from thermostats.

3.1. Influencing factors

Since indoor temperature is mainly influenced by heat gain from the
outdoor environment and indoor activities, these two factors are dis-
cussed below.

3.1.1. Outdoor environment
Outdoor environment, such as temperature, humidity and solar ra-

diation, have a direct impact on how fast a zone is cooled or how soon
the zone’s temperature rises due to heat gain. Temperature and

Fig. 2. Historical data of a thermostat in a building in Blacksburg, VA
on July 7th, 2016.
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humidity data are readily available via online sources. Determining the
heat gain from solar radiation depends upon weather condition (sunny/
cloudy/rainy), time of the day and building orientation (i.e., a room
facing west has direct sun radiance in a sunny afternoon). This study
utilizes the historical and forecasted weather information from Weather
Underground [36]. Some typical summer weather conditions used by
this service are categorized in Table 1.

3.1.2. Indoor activity
Occupant indoor activities contribute to internal heat gain which

has a crucial impact on how fast the zone temperature drops or rises.
Indoor activities can be inferred using information from occupancy
sensors (e.g., occupancy status) and plug loads (e.g., appliance usage
status). However, for a more general case where there exists neither
occupancy sensor nor smart plug, indoor activities can be related to day
of week and time of day in most cases.

Considering both outdoor and indoor environments, the indoor
temperature variation rate can be expressed as:

=
dTemp

dt
f Temp Temp time dow H w( , , , , , )room

room out out (2)

Temproom and Tempout represent indoor and outdoor temperatures re-
spectively (unit in Fahrenheit for this study); time represents hour of
day in 24 h format; dow represents day of week (1–7 meaning Monday
to Sunday); Hout is outdoor humidity in percentage; and w is the
weather class number (Class 1–4 as shown in Table 1).

3.1.3. Algorithm applicability
Using such parameters as day of week and time of day to estimate

an indoor activity level is based on the assumption that the thermal
zone has a regular operating schedule/occupancy level over days and
weeks. Hence, the algorithm presented this paper focuses only on
thermal zones that comply with this assumption. These are office

buildings that have relatively constant number of employees and reg-
ular indoor activities on a particular time of the day and a particular
day of the week. The performance test of the developed algorithm is
validated in a real-world office building environment. Further studies
will be required to determine the applicability of the developed algo-
rithm (or adjustments needed) when considering other building types,
such as clinics, public libraries and convenience stores. This is con-
sidered as future research.

3.2. Polynomial regression model

Since the impact of the aforementioned influencing factors on k and
c in (1) is non-linear, their influence on the indoor temperature varia-
tion rate is also non-linear. In order to capture the non-linear re-
lationship, while making it computationally feasible, the 3rd-order
polynomial regression model is used for predicting the indoor tem-
perature variation rate. Denote the influencing factors as x1 to x6 and
the indoor temperature variation rate as y, the model can be written as:

= + + + + + + + + +

+ + + + + + + +

+

y θ θ x θ x θ x θ x θ x θ x θ x θ x θ x

θ x θ x θ x θ x θ x θ x θ x θ x

θ x

0 1 1 2 2 3 3 4 4 5 5 6 6 7 1
2

8 2
2

9 3
2

10 4
2

11 5
2

12 6
2

13 1
3

14 2
3

15 3
3

16 4
3

17 5
3

18 6
3 (3)

Further assume = − ∗ +x zi
j

j i( 1) 6 , and normalized each variables, the
model becomes a linear regression:

∑= + + + ⋯ + + = =∼ ∼ ∼ ∼ ∼ ∼ ∼

=

y θ z θ z θ z θ z θ z θ z ZΘ
i

i i
T

0 0 1 1 2 2 17 17 18 18
0

18

(4)

Providing historical data (y, ∼Z ) pairs for training, by utilizing the
gradient descent method, an optimization problem can be solved to
acquire the parameters Θ for the predicting model.

The cost function is mean square error for all predictions, namely
the square of root mean square error (RMSE):
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Fig. 3. The integration of the proposed system and BEM.

Table 1
Categories of weather conditions from Weather Underground.

Category Description Weather Conditions from Weather Underground

Class 1 Will have direct sunlight into room during some time frame Clear
Class 2 Might have direct sunlight into room during some time frame Scattered Clouds, Partly Cloudy, Mostly Cloudy
Class 3 No direct sunlight Overcast, Light Drizzle, Drizzle, Heavy Drizzle, Light Rain, Rain, Heavy Rain, Mist, Fog, Haze
Class 4 Invalid value Unknown
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∑= −∼

=

C
m

Z y(Θ) 1
2

(Θ )
i

m
T i i

1

( ) ( ) 2

(5)

The total number of data points is m, and ∼Z i( ), y i( ) represents the
preprocessed model input vectors and outputs respectively. Using gra-
dient descent, the parameters can be iteratively solved by the formula
below:

≐ − ∂
∂

θ θ α
θ

C (Θ)j j
j (6)

α is 0.02 in this study and iteration time is 6000.

4. Multiple RTU coordinated control

In this section, an optimization algorithm (implemented by the
optimization agent) is discussed for the RTU coordinated control. The
goal is to reduce peak load of all RTUs to a predefined limit while
minimize the cost from occupants’ thermal discomfort and energy
consumption (if considered). In order to generate the control strategy
efficiently, a linear optimization is applied.

4.1. Indoor temperature prediction model linearization

Given that in a short period of a DR event, five out of six variables of
the indoor temperature prediction model typically do not change
drastically, namely outdoor temperature, outdoor humidity, day of
week (not change at all), hour (minor change during short time) and
weather condition (usually clear or cloudy hot days when DR happens).
This means the indoor temperature variation rate, either rising or
dropping, can be expressed as a function of indoor temperature only.

= =

= + +

+

dTemp
dt

f Temp Temp time dow H w g Temp

k Temp k Temp k Temp

c Temp time dow H w

( , , , , , ) ( )

( , , , , )

room out out room

room room room

out out

1
3

2
2

3

(7)

According to (1), the temperature variation rate is linearly propor-
tion to indoor temperature, which means (7) can be linearized around
the short range of the normal indoor temperature. Thus, after linear-
ization, the rate of temperature variation can be expressed as (8) and
(9). μd, μr, νd and νr are provided by linearizing (7).

= +Rdrop μ Temp νd room d (8)

= +Rrise μ Temp νr room r (9)

4.2. Mixed integer linear programming model

The objective of the multiple RTU coordinated control is to mini-
mize total cost derived from the occupants’ thermal discomfort as well
as energy consumption (optional, depending on the electricity tariff

rate the building has subscribed to) during DR events. Table 2 shows
the definition of relevant variables, among which the status of RTUs at
different time slots (St

h) are the control variables.
A study has shown that thermal discomfort will cause building oc-

cupants productivity loss [37]. To generalize, it is reasonable to assume
that a building manager can quantify an equivalent economic loss
caused by the productivity loss based on their understanding to the
building’s business. αt

h is given as such indicators. In addition, depend
on electric utilities, different buildings’ DR programs vary with each
other: some increase the electricity price drastically during a DR event
while others have price protection under the buildings’ capacity reserve
(at the cost of capacity reserve charge). As a result, the facilities’
managers might prefer or not prefer to consider the total energy con-
sumption during a DR event, and ω represents the unit cost for the
electricity. With both αt

h and ω, the optimization model is trying to find
the optimal tradeoff between occupants comfort and total energy con-
sumption. Therefore, the objective function for the coordinated control
is to minimize the overall cost from both aspects:

∑ ∑ ∑ ∑= +
= = = =

D D Temp ω P S tMinimize: ( ) · · · Δ
60h

H

t

T

HVAC t
h

h

H

t

T

Normal
h

t
h

1 1 1 1

(10)

Where, the cost for the productivity loss is defined as:

= ⎧
⎨
⎩

⩽

− >

= −

D Temp
if Temp T

α Temp T if Temp T

α Temp T

( )
0

( )

max[0, ( )]

HVAC t
h t

h
max
h

t
h

t
h

max
h

t
h

max
h

t
h

t
h

max
h (11)

The objective function is subject to the following constraints:
Inequality constraints:

1. Room temperature should not be lower than a certain threshold:

⩾ ∀ ∀Temp T h t( , )t
h

min
h (12)

2. Total power consumption of multiple RTUs should be under the DR
RTU power limit Pt

DR at any time during a DR event:

∑= ⩽ ∀
=

P S P P t· ( )t
total

h

H

t
h

Normal
h

t
DR

1 (13)

The DR RTU power limit is determined by subtracting the total DR
power limit, which is issued by an electric utility or a DR aggregator, by
the amount of the base critical load predefined by the building man-
ager.

Equality constraint:
Room temperature prediction at time t given the room temperature

and RTU status at time −t 1:

Table 2
Variables in RTU coordinated control optimization problem.

Variable Definition Variable Definition

D Total cost for occupant thermal discomfort and energy expenses. Tempt
h Indoor temperature of Zone h in Time slot t (°F)

ω Cost of electricity per kWh, in currency unit. (ω = 0 if do not consider energy conservation) Pt
total Total RTU power consumption in Time slot t (kW)

H Total number of thermal zones T Total number of time slots

D Temp( )HVAC t
h Cost for occupants’ thermal discomfort under the indoor temperature of Tempt

h PNormal
h Normal rate of RTU h (kW)

St
h Status of RTU h in Time slot t (0, 1 stands for OFF/ON) Tmax

h Maximum tolerable temperature (MTT) in Zone h
(°F)

αt
h Monetary productivity loss caused by thermal discomfort of Zone h in Time slot t , reflecting

zone priority
Tmin

h Minimum tolerable temperature in Zone h (°F)

Pt
DR Demand response RTU power limit (kW) tΔ Length of time slots (e.g., 5 min, 15 min)

βt
h New variable introduced to linearizing the problem M Big constant for solving the optimization problem
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1 (14)

Typically, there are <Rdrop 0t
h and >Rrise 0t

h . Considering (8) and
(9), (14) becomes:

= + −

+ − + + ∀ ∀ >
− − −

− −

Temp Temp t μ μ S Temp

t ν ν S t μ Temp ν t h t

Δ ·( )· ·

Δ ·( )· Δ · ·Δ ( , 1)
t
h

t
h

d
h

r
h

t
h

t
h

d
h

r
h

t
h

r
h

t
h

r
h

1 1 1

1 1

(15)

Therefore, this equality constraint introduces a quadratic element
between control variable and state variable ( − −S Temp·t

h
t
h

1 1). To linearize
the problem, assuming that:

=− − −β S Temp·t
h

t
h

t
h

1 1 1 (16)

Thus, the following inequality constraints are added:

− − ⩽ − ⩽ −− − − −M S β Temp M S(1 ) (1 )t
h

t
h

t
h

t
h

1 1 1 1 (17)

− ⩽ ⩽− − −M S β M S· ·t
h

t
h

t
h

1 1 1 (18)

where M is a constant. Since the indoor temperature is bound by M
according to (17), =M 100 is sufficient and is used in this paper.

Although the optimization model above is designed for summer DR
events, it can be easily modified (formula (11) and (14)) to be applic-
able for winter DR events, when RTUs are in heating mode.

5. Results and discussions

In this section, first, the indoor temperature prediction model will
be tested and evaluated using four months’ collected thermostat data
from an office suite; second, some simulations are compared between
the proposed multiple RTU coordinated control and other commonly
used control; third, a real-world building demonstration shows the
feasibility of the proposed control in the real world; and finally, algo-
rithm computation efficiency are analyzed.

5.1. Validation for indoor temperature prediction model

5.1.1. Training data
To train the indoor temperature prediction model, historical data

including all influencing factors are required. Among them, meteor-
ological data, such as outdoor temperature, outdoor humidity and
weather condition, are from Weather Underground; while indoor tem-
perature comes from smart thermostats. All data are retrieved from a
corresponding BEM as needed by the learning agent.

The indoor temperature variation rate in °F/s is calculated as the
slope of blue (temperature dropping rate) and red (temperature rising
rate) dash lines shown in Fig. 4.

For temperature dropping cases (e.g. T1–T2):

=
−

temperature dropping speed control deadband
T T2 1 (19)

For temperature rising cases (e.g. T2–T3):

=
−

temperature rising speed control deadband
T T3 2 (20)

Since most thermostats have a control dead-band of 1 °F, this im-
plies that as for calculating the temperature variation rate, both ther-
mostats with 1 °F granularity and 0.5 °F granularity have the same level
of accuracy. Thermostats used in this research is Radio Thermostat CT-
50 with 0.5 °F granularity and a control dead-band of 1 °F.

5.1.2. Model validation
According to Section 3.1.3, an office suite, named as Suite 1, in an

office building on Virginia Tech campus in Blacksburg, VA, USA is
studied to validate the proposed prediction model. Four groups of
training data are from May, June, July and August in 2016. Once the
model has been trained, the first 7-day data from June, July, August
and September are used for validation respectively. Fig. 5(a)-(d) shows
the validation results. X-axis represents temperature dropping or rising
cases from the validation period (1st to 7th in each month) and Y-axis is
the absolute value of indoor temperature variation rate (°F/s). In op-
eration, the learning agent can use the past 30-day data for training the
model.

To quantify the prediction error, the equation below is used to re-
present the error of a single prediction.

=
−

err
S S

S
| |

k
predict actual

(21)

Spredict is the predicted rate and Sactual is the actual rate, while S is the
average rate during these 7-day validation period. Ranking the error of
all test cases in a descending order gives distributions as shown in
Fig. 6.

According to Fig. 6, for both temperature rising and dropping speed
prediction, around 90% of prediction have error less than 50%, around
70% of prediction have error less than 30% and around 30% of pre-
diction have less than 10% error. The sources of error are manifold: (1)
The measurement error from the coarse-grained thermostat tempera-
ture readings; (2) Lack of other sensors to observe the occupancy level,
appliances’ activities and the window open or close; (3) Error come
from weather forecast result.

Considering the demand response duration is usually a few hours,
the existence of a certain level of error on rate of temperature variation
will not make a huge deviation between forecasted temperature and the
reality. To substantiate this viewpoint, time-series experiments have
been conducted and the results are shown below.

5.1.3. Time-series validation
Time-series experiments are conducted in Suite 1. Detailed me-

teorological and time information of the experiments are listed in
Table 3. Fig. 7 shows the forecast result: the black solid line represents
the predicted temperature change, acquired by initial temperature, RTU
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Fig. 4. Schematic diagrams for calculating the
indoor temperature variation rate.
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(a) Validation results using the model trained with May data 

(b) Validation results using the model trained with June data 
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(d) Validation results using the model trained with August data
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thermostat data in a building in Blacksburg, VA (May to August).
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status and predicted temperature variation rate; the red solid line shows
thermostat readings obtained later. It demonstrates that temperature
readings on the thermostat follow the predicted values closely and are
constantly within± 1 °F error band, as shown in Fig. 7(a)-(b).

5.1.4. Control deviation caused by weather forecast error
Outdoor temperature and humidity are continuous variables chan-

ging constantly over time, however, most of the weather forecasts can
only provide hourly prediction data. This means using the same outdoor
temperature and humidity for the entire hour might introduce certain
level of error. To quantify the impact, this section presents a sensitivity
test among some typical environment settings. Fig. 8 shows the ap-
pearance time of the outdoor humidity when outdoor temperature is
above 80 °F, when a DR event is more likely to happen. It reveals that
the humidity is mostly around 50–70% during the scorchers.

Test cases are chosen from a Cartesian product of typical outdoor
humidity and temperature:{50%, 60%, 70%} × {80 °F, 82 °F, 84 °F,
86 °F, 88 °F, 90 °F}. Next, small disturbances which are possible within
an hour (± °1 F and ± °2 F for temperature as well as ± 5% and ± 10%
for humidity) are added to the test cases’ base value pairs, then an in-
door temperature variation rate prediction is conducted, given typical
indoor temperature of 77 °F, a Class 2 weather, and time of 13:00.
Absolute valued deviations are calculated and compared with the un-
biased base value pairs in percentage form. For example, Fig. 9(A)

shows the results for a test case of (60%, 86 °F) in temperature dropping
rate prediction, the average deviation is 4.37% as shown in Fig. 9(B)
together with average deviations of other test cases. Averaging all de-
viations of 18 test cases, Fig. 9(B) concludes an average deviation of all

Fig. 6. Distribution of indoor temperature varia-
tion rate prediction error.

Table 3
Parameters needed for time-series control.

Case Outdoor
temperature
(°F)

Outdoor
humidity
(%)

Weather
category

Starting time Duration (h)

a 80 55 2 15:44 2
b 84F 57 1 13:00 1.5

(a) Case a 

(b) Case b 

Fig. 7. Comparison between temperature prediction and actual temperature in Cases a
and b.
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test cases for temperature dropping speed prediction: 4.33%. The same
analysis can be applied to indoor temperature rising rate prediction for
all 18 test cases, with an average deviation of 5.33%.

Considering the average temperature dropping rate in Suite 1,
August 2016 is around × °−9.02 10 F/s4 , a 4.33% deviation will cause a
0.04 °F difference after 20 min of cooling. Similarly, a 5.33% deviation
will result in a 0.06°F difference after a 20-min non-cooling period. The
magnitude of such differences demonstrates that these small control
deviations caused by variation of outdoor temperature and humidity
within an hour do not have serious impact on occupants’ comfort.

5.2. Validation for multiple RTU coordinated control

In this section, the control algorithm proposed in Section 4 is im-
plemented in Python code for case study. Comparisons between this
algorithm and the most common practice of HVAC control in small- and
medium-sized building during DR events, namely increasing thermostat
set point, are made, as shown in Table 4.

Building information and operation data from four suites in a
Virginia Tech building in Blacksburg, VA, USA are used as prototype to
showcase the proposed algorithm. These four suites mainly consist of
offices and laboratories. Each of them can be considered as a thermal
zone and has its own thermostat and RTU. The electric power con-
sumption from four RTUs are listed in Table 5, with the total RTU
power of 32 kW.

The proposed algorithm is designed for RTU coordination during a
DR event, which typically lasts for a few hours. For example, the length
of DR in STOR, UK, can be as short as 2 h [38]. In addition, as authors
in [21] point out, with a ‘temporal’ aggregation, the length of each end
user’s DR will be shorter. So in this section, it is reasonable to simulate a
90-min DR event, which happens in a Class 2 weather condition day
during 13:00–14:30, with an outdoor temperature of 85 °F and

humidity of 49%. Initial temperature in Suite 1–4 before the DR event
starts are 74.0 °F, 73.0 °F, 76.5 °F and 76.0 °F respectively. Two para-
meters need to be set before the operation of the control system: αt

h and
ω. In these simulations, αt

h is set to be 1.25 reflecting the monetary
productivity loss of 1.25 Dollars for every time slot (5 min) and every
1 °F increase above the MTT. ω is 0 when energy consumption is not
considered or otherwise it is set to 1, representing the electricity price
during a DR event is 1 Dollar per kWh. Other values of αt

h and ω will be
discussed later.

Eight scenarios with different requirements and control methods
during the DR event are studied:

Scenario 1: Control using DBBC. Increasing the set point of all
thermostats to 76 °F (Considering the dead-band of 1 °F, the max-
imum temperature in each zone will be 77 °F).
Scenario 2: Control using DBBC-PL. Increasing the set point of all
thermostats to 76 °F, meanwhile limiting the total power con-
sumption under 13 kW.
Scenario 3: Control using DBBC-Pri. Increasing the set point of all
thermostats to 76 °F. Starting from 13:30, change the set point of
Suite 3 to 75.5 °F so that the temperature will be around 76 °F
during a meeting from 13:45 to 14:30 in Suite 3. Total power con-
sumption limited under 20 kW.
Scenario 4: Control using proposed coordinated control. Set occu-
pants MTT as 77 °F and DR RTU power limit as 20 kW. Energy
consumption is not considered, with =ω 0.
Scenario 5: Control using proposed coordinated control. Set occu-
pants MTT as 77 °F and DR RTU power limit as 13 kW. Energy
consumption is not considered, with =ω 0.
Scenario 6: Control using proposed coordinated control. Set occu-
pants MTT as 77 °F and DR RTU power limit as 20 kW, total energy
consumption is considered, with =ω 1.

Fig. 8. Humidity distribution when temperature is above 80 °F.
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Scenario 7: Control using proposed coordinated control. Set occu-
pants MTT as 77 °F and DR RTU power limit as 20 kW. Temperature
of Suite 3 should be around 76 °F same as in Scenario 3. Total energy
consumption is considered, with =ω 1.
Scenario 8: Control using proposed coordinated control. Set occu-
pants MTT as 76.5 °F and DR RTU power limit as 13 kW. Energy
consumption is not considered, with =ω 0.

The simulations results are shown below: The temperature profiles
and the total RTU power profiles from eight scenarios are shown in

Fig. 10. Two kinds of average temperatures of all suites under 8 sce-
narios are compared in Fig. 11; and the productivity loss and total
electricity consumed are summarized in Table 6.

Compared with the DBBC series, the proposed coordinated control
shows three advantages on the following aspects:

(1) Peak load shaving effect. (Comparison between Scenario 1, 4 and 5)

Giving the same MTT, the maximum power consumption in
Scenario 1 is 25 kW; while under the proposed control approach, con-
sumptions in Scenario 4 and 5 are strictly limited under 20 kW and
13 kW respectively, both with zero occupants’ discomfort. By reducing
the maximum power, the building owners can reduce their capacity
reserve charge during DR events.

(2) Indoor temperature control (Comparison between Scenarios 2 and
5)

Both with 13 kW power limit, in Scenario 2, the DBBC-PL method
causes occupants discomfort which is equivalent to $11.58 productivity

Table 4
Control methods for demand response.

Control methods Details

Dead-band based control (DBBC) • Dead-band based control (DBBC): Most commonly, the control of RTUs rely on thermostats’ dead-band control. Usually the temperature
set point will be raised to make RTUs run less frequently during DR events

• Dead-band based control with power limit (DBBC-PL): Similar to the DBBC, but a RTU will not start if its start will cause the total power
consumption exceed the predefined power limit, even though the zone temperature is over the upper bound of the dead-band

• Dead-band based control with priority (DBBC-Pri): Based on the DBBC-PL, however, some RTUs have higher priority to be operated even
when power limit is reached. In such cases, running RTUs with low priority will be shut down to limit the total power

Proposed coordinated control As stated in Section 5

Table 5
Information of testing thermal zones.

Suite 1 2 3 4

Main usage Offices Laboratory Laboratory Offices
RTU power (kW) 8.5 7.0 12.0 4.5
Approximate area (square feet) 3600 3150 5800 2400
Approximate occupants number 9 10 20 5

(a) Scenario 1 (b) Scenario 2

(d) Scenario 4(c) Scenario 3
Fig. 10. Temperature and total power profile of 8 demand response scenarios.
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loss while in Scenario 5, no occupants discomfort at all.

(3) Zone priority management (Comparison between Scenarios 3 and
7)

Given the same power limit and temperature request in Suite 3, the
coordinated control can save up to 80% of occupants’ discomfort with
similar energy consumption, compared with DBBC-Pri. In addition,
discomfort is distributed among different suites in Scenario 7 while in
Scenario 3 it is originated from a single suite’s suffering.

To sum up, these advantages can be attributed to the load shifting
feature of the coordinated control. Due to the lack of coordination, the
ON/OFF status of each RTU is a random process when using DBBC. On

(f) Scenario 6(e) Scenario 5

(h) Scenario 8(g) Scenario 7
Fig. 10. (continued)

Fig. 11. Mean of four suites’ temperatures under
8 scenarios.

Table 6
Occupants discomfort, energy consumption and maximum power of 8 scenarios.

Scenario Total monetary productivity
loss from occupants discomfort
($)

Energy
consumed (kWh)

Maximum power
(kW)

1 0.80 17.33 25
2 11.58 12.96 12
3 8.85 15.83 19
4 0 19.04 19
5 0 16.08 13
6 0.68 14 16.5
7 1.73 16 16.5
8 5.08 18.58 13
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the other hand, the coordination eliminates the cases when multiple
RTUs operating at the same time and causing undesirable high demand,
as shown in Fig. 10(a) 13:40–13:45. Moreover, the coordination over a
period of time will enable some RTUs to pre-cool when resource,
namely the power capacity, is available. Thus, spread the demand over
the temporal range. In all, the coordinated control results in a higher
capacity factor, which enables taking most advantage of the power
limit; and from the electric utility perspective, an increased load pre-
dictability is highly welcomed during DR events.

Besides the advantages mentioned above, the coordinated control
also provides the following flexibilities.

(1) Jointly consider occupants discomfort and energy consumption,
suitable for different DR programs

The values of αt
h and ω are determined by the building manager,

according to the building’s business type and the DR program they
participate in. Those two values will influence the tradeoff between
user discomfort and total energy consumption, therefore, different
settings of αt

h and ω are provided and compared, as shown in Fig. 12.
According to Fig. 12, two general rules can be concluded:

(a) For the same αt
h, more or equal amount of electricity will be con-

sumed if the price is cheaper, meanwhile delivers a lower maximum
average temperature (more comfortable).

(b) For the same ω, usually more electricity will be consumed if the
productivity quality is more valuable (larger αt

h), also results in less
occupants’ discomfort.

In general, the building manager will set ω as the electricity price
for their DR program if they want to consider energy consumption and
set αt

h according to their evaluation of occupants’ productivity. Similar
simulations as Fig. 12 can be run prior to the system configuration to
give the building manager a better sense about how to set αt

h.

(2) Flexible DR settings

A building manager can also determine the DR settings such as
occupants MTT and power limit flexibly. From the scenarios above,
there are two points worth noting:

a. In Scenario 4 and 5, the power limits are 20 kW and 13 kW re-
spectively. Under both scenarios, the occupants do not suffer from
thermal discomfort, however, if the power limit is 20 kW, the
building manager needs to pay higher capacity reserve charge
($/kW) during demand response. Thus, power limit of 13 kW is a
better choice since it renders more monetary savings but not ex-
acerbate occupants’ discomfort. In addition, the 20 kW power limit
in Scenario 4 may also cause higher energy consumption than the

13 kW limit in Scenario 5. As shown in Table 6, an extra 2.96 kWh of
electricity is consumed in Scenario 4. This can be explained using
Figs. 11 and 13.

In Fig. 13, since D has a smaller temperature difference from the
normal set point than C, the operation point D thus yields higher
comfort level. According to Fig. 11, since indoor temperature under
Scenario 4 is lower than that of Scenario 5, it is reasonable to use C and
D in Fig. 13 to represent Scenarios 5 and 4, respectively, and the
comfort difference in the figure can explain the 2.96 kWh of extra
electricity consumed in Scenario 4. Since energy consumption is not
considered in these scenarios, the solver will provide an optimal solu-
tion among many, and this solution does not necessarily use less energy.
In fact, the optimal control strategy might control the RTUs to use more
energy to make occupants more comfortable.

In all, the building manager can determine the optimal power limit
with the consideration of capacity reserve charge and the expected
occupants’ comfort level.

b. A building manager should set the MTT and power limit corre-
spondingly. To be specific, a low power limit will not allow RTUs
running frequently and as a result, might not be able to satisfy a low
MTT. For instance, in Scenario 8 above, the power capacity factor is
nearly 1 yet the temperature in each room can hardly be controlled
below the MTT of 76.5 °F. This means the MTT of 76.5 °F is not very
reasonable under the power limit of 13 kW.

Fig. 12. Comparison of energy and thermal conditions under different monetary settings.
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To find out an optimal power limit and a reasonable MTT-power
limit pair, simulations can be run under some typical DR conditions,
and based on simulation results, a building manager can decide the
power limit and MTT to be implemented for each building.

5.3. Commercial building control and validation

To validate the feasibility of implementing the proposed system in a
real-world environment, a building control experiment is conducted in
an afternoon during 16:30–18:00, with Class 2 weather category. Four
thermal zones in the building are the prototype for the simulation study
in Section 5.2 and the suite information is provided in Table 5. On-site
system set-up is illustrated in Fig. 14: with four smart thermostats in-
stalled and the BEMOSS running as the IoT-based BEM. The forecasted
outdoor temperature and humidity during a DR event are 82 °F and
52%, respectively. The DR power limit and MTT are set to be 18 kW and
78 °F, respectively. Energy savings during DR is also considered in the
optimization process with the electricity price of 1 Dollar per kWh
( =ω 1).

The initial temperature Temp0 used by the optimization model
complies with following rule:

Condition A: At the time of computation, the thermal zone’s RTU is
in off (not cooling) state.
Condition B: At the time of computation, the thermal zone’s RTU is
in cooling state.

= ⎧
⎨⎩

+
Temp

Temp T if condition A
Temp if condition B

Δ ( )
( )

dev acc

dev
0

(22)

In (22), Tempdev is the temperature reading from thermostat at that
time; TΔ acc is the accuracy granularity unit of the thermostat, adding
this value to Tempdev under Condition A is a conservative measure.

Fig. 15 shows the control results, with the black line represents the
predicted temperature variation under optimal control strategy gener-
ated from the proposed algorithm; and the red solid line shows the
actual temperature reading later acquired from the smart thermostats.

The temperature profiles in all suites demonstrates a desirable
control result. The temperature profiles in Suites 1, 2 and 4 stay closely
with the predicted temperature (within±1 °F error band). For Suite 3,
around two third of the time, the temperature is within± 1 °F error
band while the rest is slightly above this range. The reason is that Suite
3 is a research lab, with some large heat-generating pumps running
randomly according to experiments schedule. Such a stochastic change
in internal heat gain causes such control errors.

To study the peak load reduction effect, another non-DR event day
with similar weather profile is found in historical data as a control

group. The daytime outdoor temperature profiles of both days are
shown in Fig. 16, implying that without a DR event, the DR event day
should consume similar level of power of the non-DR event day.

As part of the research setting, some BACnet power meters are used
to collect the power consumption data. After processing these data, the
total RTU power consumption of the test day and the control group is
shown in Fig. 17. The maximum power consumption decreases by al-
most 50% during the DR event (as compared with the non-DR event) in
exchange with slight occupant discomfort according to Table 7.

The temperature in four suites during the DR event, which does not
exceed MTT, is the indicator that the occupant discomfort has been
minimized by the algorithm proposed.

It is worth noting that because the weak wireless signal in Suite 3,
the smart thermostat missed the signal to turn on its RTU at 17:10 and
thus caused an actual power ditch shown in Fig. 17. This problem can
be avoided by providing a strong and reliable wireless network. In
addition, the delay of turning RTU on may also contribute to the Suite
3's temperature deviation.

5.4. Assessment on algorithm efficiency

5.4.1. Measures to improve algorithm efficiency
Some types of rapid DR events require response within minutes to

provide operating reserves to power system [13]. Therefore, the pro-
posed algorithm should be able to respond quickly to meet such a re-
quirement. While the learning process of the proposed approach is set
to run at the night before a potential DR event day, the optimization
process is run just before a DR event. Thus, only the efficiency of the
optimization process is discussed. Generally speaking, the lower the DR
power limit and the lower the MTT are, the longer it takes for the op-
timizer to reach the optimal solution. Two measures are taken to ensure
the efficiency of the proposed algorithm.

1. Offline testing – This can be conducted given some typical DR event
settings (e.g., temperature, time and weather) to determine rea-
sonable DR RTU power limit and MTT. For example, Scenario 8 in
Section 5.2 demonstrates that a 13 kW RTU power limit cannot sa-
tisfy the MTT of 76.5 °F. A reasonable setting will allow the opti-
mization problem to be solved efficiently.

2. Timeout option for the optimizer – when the calculation time is
more than five minutes and the precision is under a preset level,
further computation will be terminated. This prevents the solver
from spending unnecessary time searching for the absolute op-
timum.

Table 8 shows the computation time to obtain an optimal solution

Suite 1

Suite 2

Suite 3

Suite 4

72 72 72 72

BEMOSS

Proposed 
Control 

Algorithm

Unoccupied Area

Wi-Fi Communica on
1

2
3 4

5

1 Smart thermostats

2 IoT-based BEM 
running on single 
board computers

3 Information needed by 
the learning agent

4 Control strategy sent 
for execution

5 Proposed system 
running on a Linux 
machine

Fig. 14. Schematic diagram of on-site system set-up in the
building in Blacksburg, VA.

X. Zhang et al. Applied Energy 205 (2017) 1034–1049

1046



using the proposed algorithm in Scenarios 4–8 from Section 5.2. The
computation platform is a 2 GB RAM Linux virtual machine, which
emulates the configuration of some embedded systems. The result im-
plies the proposed algorithm can be solved quickly enough for real-time
implementation:

5.4.2. Impact of the number of thermal zones on algorithm efficiency
To further study the impact of the number of thermal zones has on

algorithm efficiency, additional scenarios are evaluated. For simplifi-
cation, the settings from Suites 1–4 are doubled and tripled to create a
group of eight and twelve thermal zones. The time it takes to solve the
optimization problem is shown in Tables 9 and 10 for eight and twelve
thermal zones, respectively. The timeout setting for the optimizer is
300 s in the study.

According to [22], around 72.1% of total commercial buildings in
the U.S. have area less than 10,000 square feet. Assuming each thermal
zone has 1000 square feet on average, total area of twelve thermal
zones is up to 12,000 square feet, and thus the testing of up to twelve
thermal zones is reasonable.

According to the testing results, it shows that most of the compu-
tation will reach an optimum or suboptimal solution and thus is capable
of practical use.

6. Conclusion

In this paper, a peak load reduction algorithm based on IoT-based
BEM is developed by optimally coordinating the operation of RTUs
while minimizing occupant discomfort. The proposed approach com-
prises both the learning algorithm to capture building thermal para-
meters and the optimization algorithm to determine optimal RTU op-
eration. Analyzing only the coarse-grained thermostat data, the
learning algorithm is able to accurately capture the thermal properties
of different zones. This will reduce investment on expensive sensor
networks and free the building operator from complicated system
configurations. The optimization algorithm used is mixed integer linear
programming to enable fast response and guarantee computational ef-
ficiency. Tests on an office building show effective coordination be-
tween RTUs; the system maintains predefined occupant comfort level
while keeping the total power consumption under the DR RTU limits.
While the case study discussed here reflects the building in the U.S., the
proposed algorithm can also be used in any commercial buildings in
other countries that would like to limit electrical peak demand (kW) by
coordinating the operation of multiple RTUs.

In all, the proposed peak load reduction algorithm can serve as an
affordable software solution in small- and medium-sized commercial

Fig. 15. Temperature change in four suites during DR event.
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Fig. 16. Weather profile of DR event and non-DR event day.
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buildings and can help mitigating the barrier of popularizing DR pro-
grams among these buildings. Future work may include a performance
test of the proposed algorithm in small- and medium-sized commercial
buildings other than office buildings and the improvement of the pro-
posed algorithm to take into account multi-stage RTUs and part-load
operation.
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