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H I G H L I G H T S

• An algorithm for optimal management of aggregated HVAC power is presented.

• The HVAC control problem is formulated as a jobs scheduling problem.

• The algorithm is analytically proven to be optimal.

• Simulation results show an improvement in HVAC demand reduction by 130% over a traditional approach.

• Demand restrike is limited to pre-DR-event level.
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A B S T R A C T

This paper presents an algorithm for optimal management of aggregated power demand of a group of heating,
ventilating and air-conditioning (HVAC) units. The algorithm provides an advanced direct load control me-
chanism for HVACs that leverages the availability of smart thermostats, which are remotely programmable and
controllable. The paper provides a theoretical basis and an optimal solution to the problem of cycling a large
number of HVAC units while respecting customer-chosen temperature limits for the purpose of maximum load
reduction. The problem is presented in a new light by transforming it into a job scheduling problem and is solved
using a combination of a novel greedy algorithm and a binary search algorithm. By leveraging widespread
availability of smart internet-based (also referred to as IoT-based) thermostats in today’s environment, the
proposed approach can be readily applied to residential buildings without additional electrical/IT infrastructure
changes.

1. Introduction

Demand side management is an alternative to achieving energy
balance in the electric grid by means of altering electrical demands to
suit available supply. Historically, demand side management has been
used for long term energy balance through energy efficient appliances,
financial incentives, consumer education and government regulation
[1]. It has evolved to incorporate load profile management through
energy audits, direct load control and subsequently real time pricing
[2]. Demand response (DR) is one method of demand side management
where end-use electricity consumption changes in response to changes
in electricity price or to alleviate system stress condition [3]. Surveys on
various DR methods are available in [4–6] and real-world applications
can be found in [7]. One of the most popular DR methods for managing
aggregated power of a group of customers is direct load control (DLC)
[8] in the residential sector [9], where a utility remotely turns off

electrical equipment at customer premises, e.g., HVACs, during the time
of system stress, disregarding customer comfort.

In the literature on smart DLC for HVAC, HVACs are crudely divided
into groups based on their comfort requirements and building thermal
characteristics, then an empirical fuzzy rule [10] or a predictive control
method [11] is applied to control the duty-cycle for each group. These
methods employed, however, neither explicitly take care of customer
temperature preference nor achieve optimal load reduction. Authors in
[12] use peculiar chilled water thermal storage capacity to offer DLC in
commercial buildings, which cannot be generalized for the residential
settings. In [13] adaptive control based DLC is explored where a power
reduction requirement is converted to set-point change requirement to
feed into a classical thermostat based controller. The study shows a
simulation result where the power has been successfully limited to 90%
of the original peak but whether that is the maximum reduction at-
tainable is unknown. Similarly arbitrary change of temperature set-
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points are shown to achieve some arbitrary reduction of power con-
sumption during a critical period in [14]. In [15] double auction based
transactive control is used to set-up a capacity market to limit the ag-
gregated HVAC power. However, the power limit imposed is arbitrarily
chosen and the transactive control used may not be optimal to control
the population of HVACs. In [16] dynamic price based transactive
control is studied for its efficacy in reducing the peak. But the price
signal used is arbitrarily chosen and the reduction attained is far from
optimal. Our previous work on transactive control [17] shows that a
simple price signal based transactive control can reduce load during a
high price period but creates a restrike after the event.

There are also a substantial number of research work on optimal DR,
focusing on task scheduling problems. Authors in [17–19] solve an
optimization problem to calculate the optimal schedule for each ap-
pliance that incurs minimum cost. This method only addresses sce-
narios where buildings are concerned about their cost minimization but
the presence of other households trying to do the same thing has no
effect on the solution. Authors in [20] indirectly address this problem
by setting the upstream price as a function of the aggregated power, but
it is still based on a primitive task-scheduling problem and as such does
not take into account the fine thermal dynamics of HVACs. Similarly,
authors in [21–23] address aggregated appliance control through op-
timal scheduling, but peculiar HVAC dynamics is ignored. In our pre-
vious work [24], DR at a single house is achieved by scheduling loads
according to their priority and comfort requirement but the application
of the algorithm for aggregated cases remains unexplored. In [25],
HVAC thermal dynamics are incorporated but individual comfort con-
straints and the aggregated dynamics are ignored. In [26], HVAC
thermal dynamics is taken into account and optimization for cost re-
duction based on dynamic price is performed but aggregated dynamics
is disregarded.

There are also research work that specially targets aggregated
control of HVAC or thermostatically controlled loads (TCL). In [27], a
probabilistic aggregate model of a collective HVAC system is used for
demand response but the aggregate power frequently exceeds the re-
ference and also temperatures of some buildings exceed customer pre-
ference limits. In [27–29], an aggregated model is developed for HVACs
and their potential for load following is explored. HVACs are controlled
based on priority established by calculating temperature distance from
the boundary. Authors in [30] develop a similar approach for water
heater control. Although the control methods used in these papers are
intuitive their optimality is not proven. The research work in [31]
converts HVACs into generic second order continuous time TCLs and
creates an aggregated battery model to study the collective behavior on
average; but the aggregate model cannot take into account in-
stantaneous co-incidence event of different HVACs. In [32], an iterative
demand bidding is used to arrive at an optimal schedule of customers so
that their collective utility is maximized–but there is no direct control
on the amount of power reduction and might take long time for the
iterative bidding to stabilize and deliver HVAC control schedules.

In more recent works, an aggregated model of AC has been devel-
oped and an optimal DR based on dynamic programming that respects
comfort constraints has been proposed in [33]. Similarly, aggregated
control of residential HVAC for peak load shaving has been explored in
[34] and optimal DR using MPC approach can be found in [35–37]. In
[38], authors present mechanism for optimal scheduling of smart ap-
pliances in the context of a smart community for the purpose of peak
load reduction. Transactive control based DR is explored in [39]. A
generic modelling technique also applicable to HVAC for fast-acting DR
can be found in [40]. However, all of these research is concerned with
optimal DR in presence of an upstream price signal or by creating
various pricing scheme, which is not applicable to the problem we are
exploring. In [41], aggregated control of HVAC for frequency regulation
using a sliding-window based control is explored while their control for
load balancing service is explored in [42].

In the area of DLC for HVACs for peak shaving, recent work close to

ours can be found in [43]. While authors in [43] minimize user comfort
violations by doing a fair allocation of the comfort violations to reduce
the peak load by an arbitrarily set amount, this work aims at meeting
the user comfort requirement (that the user agreed to in the contract),
and achieving maximum attainable load reduction. Hence the novelty
and contribution of this work is to find the maximum possible load
reduction, and show a method to optimally achieve it, backed by an
analytical proof.

We propose a novel control algorithm for a population of HVAC
units that uses a combination of a novel greedy algorithm and a binary
search algorithm to keep the aggregated demand (kW) at the lowest
possible level during a control duration. The proposed approach ex-
plicitly considers comfort constraints (in terms of upper and lower
temperature limits) of individual customers by maintaining indoor
temperatures within their preference bounds. Although there is abun-
dant research that considers HVAC thermal dynamics, user comfort
constraints and aggregation effects for HVAC control, as per our
knowledge, this approach in the context of finding the maximum load
reduction potential given a DR period is new. The proposed greedy
algorithm for HVAC control is simple, intuitive and highly efficient.
This paper specifically analyzes HVAC control dynamics, presents an
intuitive problem formulation for optimal load control, and analytically
proves the solution optimality. This contributes to theoretical clarity on
the problem of aggregated HVAC control. Although the work presented
here can be easily generalized to any TCL, this paper focuses on HVAC
control as it is the most popular one in today’s environment, and there
is a widespread adoption of smart WiFi thermostats. No such smart
thermostats are widely available for controlling other TCLs like water
heaters or refrigerators. This means large scale implementation of the
proposed algorithm for HVAC control is possible without any additional
infrastructure and without the installation of A/C cycling switch that is
being done today for HVAC DLC. Although applicable for both heating
and cooling, for brevity, the rest of the paper focuses on the cooling
mode of operation.

The contributions of the paper can be summarized as following:

(1) The paper presents a novel linear-time algorithm to find the max-
imum load reduction potential for an aggregation of houses such
that their comfort requirements are not violated.

(2) Associated algorithm to optimally control the HVACs in those
houses such that the aggregated power is kept at the minimum
value while respecting the comfort requirement is also presented.

(3) The problem of controlling the HVACs is transformed into an in-
tuitive form of Job scheduling problem which provides theoretical
clarity to the problem.

(4) The optimality of the algorithm is analytically proven.
(5) Optimal control of HVAC in response to DR signals presents a novel

and important work in the field of intelligent building energy
management system.

2. Framework and problem formulation

Let us consider an aggregation of N residential customers who have
signed up with a DR aggregator, like EnerNoc, which can perform
collective control of these customers to provide load reduction DR
service to the utility or to bid this demand reduction potential into a
capacity market [44]. It should not be hard to find willing participants
for the proposed program since there are already customers who are
participating in traditional HVAC DLC programs where they agree to let
the utility remotely turn off their HVAC for a fixed duration of time
(without regards for the indoor temperature) in exchange for some
rebates. At minimum those customers should be willing to participate in
the proposed form of DR which ensures that the temperature will be
kept within a pre-agreed comfort bounds. The overall framework is
shown in Fig. 1, where there is one aggregator and N houses, each with
an IoT-based thermostat. There is also a controller dedicated for each
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house, which logically belongs to the house, but can be implemented as
an independent agent at the aggregator.

When the aggregator gets a call for DR service, it sends a DR-event
called signal to the controllers at each house and requests for house
thermal parameters and customer’s preferred temperature boundaries.
The controller can estimate house thermal parameters based on known
properties (such as, floor area, insulation types, etc.) or from house
thermal response using maximum likelihood based estimator [45]. The
aggregator then determines optimal demand limit (kW) using the pro-
posed binary search algorithm (discussed in Section 3.1). It can now bid
this DR service into the capacity market if required or report this value
to the utility.

When the time for DR event comes, the aggregator sends a signal to
each controller and the controller goes into DR mode. At the beginning
of each subsequent control interval throughout the DR event, the

aggregator requests for the internal temperature of each house. The
controller communicates with its respective IoT-based thermostat to get
the current temperature and calculates the time for the temperature to
hit the comfort limit. It then forwards this information to the ag-
gregator.

After receiving the information from all houses, the aggregator
computes the optimal HVAC state for the current control period for
each house using the proposed greedy algorithm (discussed in Sections
3.2 and 3.3) which it sends back to each controller for implementation.
The controller then keeps the HVAC state OFF or ON during the current
control period based on the state assigned. Usually, modern IoT-based
thermostats do not provide a mechanism for direct compressor control
to enforce the ON or OFF state, but this can be achieved fairly easily by
remotely increasing/decreasing their set-points by at least 5 deg from
their current temperature readings, forcing them to turn ON or OFF

Fig. 1. Framework for optimal DR.
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instantly. 5 deg is deemed to be sufficient margin to overcome the
deadband so as to maintain the state until the next control period. The
whole process is then repeated until the end of the DR event, at which
case, the controller restores the regular scheduled set-point on the IoT-
based thermostat, allowing it to follow the normal deadband based set-
point following mode.

For load reduction demand response purpose, such as the New York
ISO special case resources program [46] or NYSEG’s Distribution Load
Relief Program (DLRP) [47], it is required to reduce the load by a
certain value to qualify for the incentives. The problem of finding the
optimal demand reduction (kW), so that the aggregated demand during
a duration T from tstart to tend is kept at the minimum, while respecting
comfort constraints of individual customers can be mathematically
expressed as shown in (1).
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where

DL: the demand limit (kW)
tk: time step. Duration T is divided into a series of time steps

⩽ <t t tstart k end

TA
t

n
k : indoor air temperature of house n at time step tk (°F)

θlowern: lower bound of acceptable temperature - house n (°F)
θuppern: upper bound of acceptable temperature - house n (°F)

PHVACn: rated power of HVAC at house n (kW)

Un
tk: HVAC state (1=ON/0=off) for house n at time step tk

+TA
t

n
k 1: air temperature in the next time step - house n (°F)

f: a function that models second order thermal dynamics of a
house and expresses indoor air temperature in the next
time step based on the following parameters

TA
t

n
k : air temperature in at time step tk (°F)

TM
t

n
k : building mass temperature at time step tk (°F)

Ctk: house thermal parameters (e.g., insulation, heat gains and
thermal capacity) at time step tk

To
tk: outdoor air temperature at time step tk (°F)
tΔ : the interval between two time steps

The second order equivalent thermal parameter (ETP) model [48,49] as
shown in Fig. 2 is used to determine function f.

Where

QA: fraction of heat injected into indoor air by internal sources
Q( )internal , and solar radiation Q( )solar (Btu/h)

QM : the other fraction of heat injected into building mass by
Qinternal and Qsolar (Btu/h)

QHVAC: Heat removed from indoor air by the HVAC (Btu/h)
TA: indoor air temperature (°F)
TM : building mass temperature (°F)
TO: outdoor air temperature (°F)
HM : building mass conductivity to the indoor air (Btu/°F·h)
CM : heat capacity of the building mass (Btu/°F)
CA: heat capacity of the air mass (Btu/°F)
UA: heat conductivity of the building envelop (Btu/°F·h)

The house thermal dynamics is driven by the following two equations
[50]:
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Solving (2) and (3) for TA and TM gives a closed form solution of
function f as:

= + + =+T A e A e d
c

f T T C T t U( , , , ,Δ , )A
t r t r t

A
t

M
t t

o
t

n1
Δ

2
Δ tk

n
k

n
k k k1 1 2 k

(4)

= + + ++T A A e A A e g d
cM

t r t r t
1 3

Δ
2 4

Δk 1 1 2
(5)

Variables A A A A d c r r, , , , , , , 21 2 3 4 1 are constants related to house
thermal parameters, the initial value of air, mass and outdoor tem-
perature, heat gains and the HVAC state. In this study, all of the houses
are assumed to be located in the same geographical area, and hence the
spatial variance of outdoor temperature has been ignored. The temporal
variation of the ambient temperature is included in the simulation,
however, it is assumed that the prediction for the next day is available
and accurate.

3. Proposed solution

The proposed solution for (1) is a binary search algorithm, which
uses a novel greedy algorithm to optimally control HVACs. This is
discussed below:

3.1. Determination of optimal DL

This algorithm searches for the minimum value of DL using binary
search. The range of possible solution for DL is given by (6).

∑⩽ ⩽
=

D0 PL
n

N

1
HVACn

(6)

The binary search starts with the first trial equal to the middle of the
range in (6).

∑=
=
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2
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n

N

1
HVAC1 n

(7)

For each trail determines if the aggregated power can be kept below
DL using a function fO (DLk) discussed in Section 3.3. If fO (DLk) returns
true, the next trial value of DL will be chosen to be even lower; and if it
returns false, the next trial will be higher. The process is repeated until
DL varies between iteration by less than 0.1% of the maximum value.
The complete algorithm to find optimal DL is shown below:

Algorithm 1. Finding optimal DL.

1: = ∑ =right Phvack
n

n1
2: left= 0Fig. 2. ETP model for a house.
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3: =D rightL0

4: =k 1
5: = ∗tol right0.001
6: while True:
7: mid = (right+ left)/2
8: if abs( − >−D mid tol) :Lk 1

9: =D midLk

10: else:
11: break
12: if fO (D ):Lk

13: =right DLk

14: else:
15: =left DLk

16: = +k k 1
17: end while
18: return DLk

Since the time complexity of a binary search algorithm is O(log(N)),
up to 0.1% of the ∑ = Phvack

n
n1 can be reached within at most 10

iterations ( =log (1000) 102 ), which is very efficient.

3.2. Optimal HVAC control for a given DL

For function fO (D )Lk to determine if the aggregated power can be
kept below DLk, an optimal HVAC control algorithm is described here.
This algorithm selects a set of HVACs during each time step, so that the
comfort constrained is maintained and the aggregated power remains
below the demand limit DLk. Fig. 3 Alternate view of the problem.

The vertical position of the (red and blue) balls represent the indoor
air temperature for each house, and the black bars on the top and
bottom correspond to the upper and lower temperature bounds of re-
spective houses. Different balls have different weights that correspond
to the rated power of corresponding HVACs. Considering the cooling
mode of operation, the temperature naturally rises because of the
outdoor temperature and heat gains, which is analogous to the balls
rising. The rise rate is different for different balls as heat gain and in-
sulation are different for different houses. Now, during each time step,
there is a choice of bringing down M out of these N temperatures (balls)
at their respective cooling-down rate, which is different for different
houses. The problem then is to repeatedly select M out of these N balls
to bring down at each time step (and let the rests rise up) so that none of
these balls hit the boundary for the maximum possible time.

Now, the greedy algorithm proposed is to keep selecting HVAC with
the shortest time-to-boundary until their aggregated power reaches the
demand limit DL. The ‘time-to-boundary’ for the HVAC of house n at a
given time tk is defined as the time it takes for the temperature to hit the
upper limit if no HVAC operation happens. This is equivalent to the
time it takes for a ball to hit its upper wall in Fig. 3. The time-to-
boundary, B ,n

tk can be calculated using (4) by solving for tΔ that would
make the temperature hit the upper boundary, as shown in (7):

= ∀θ f T T C T B n( , , , , ,0)upper A
t

M
t t

o
t

n
t

n n
k

n
k k k k (7)

where

Bn
tk: time to boundary for HVAC of house n at time tk

0: number zero (because the HVAC state is turned off)
Now, instead of looking at individual HVACs in terms of their tem-
perature, upper boundary and lower boundary, they can be viewed in
terms of their time-to-boundary. This lets us transform Fig. 3 into Fig. 4.

The height of the balls in Fig. 4 now represent their time-to-
boundary, and the lower solid lines represent the lower limit for time-
to-boundary, which is 0 for all balls. In this transformed view of pro-
blem, all balls fall down at the same rate, except the red balls that are
selected to rise up during the current control intervals. By how much
the red balls rise depends on their individual house thermal parameters
and HVAC cooling capacities. Also, the upper boundary for each ball
can be different because the maximum allowable time-to-boundary for
each ball is different and is denoted by maximum-time-to-boundary,
Bn

max, which can be determined by solving (7) with the TA
t

n
k and TM

t
n

k

replaced by the lower temperature boundary. Also, the weight of each
ball can be different owing to different HVAC rated power.

The proposed greedy algorithm then corresponds to selecting the
bottom-most balls in Fig. 4 during each control interval until their total
weight reaches DL. The balls that would hit the upper boundary if se-
lected to rise are skipped in the process. The state of the corresponding
HVACs remains constant for each control period, and is updated at the
beginning of the next control period. This algorithm is analogous to a
showman juggling several tennis balls where, at any given time, only
two balls are being thrown up and the rest are falling down, but by
cleverly switching between the balls, he manages to keep the height of
all balls above the ground. As such, this greedy algorithm for HVAC
control is named Juggling Algorithm (JA). The algorithm is as follows:

Algorithm 2. Juggling Algorithm (JA) for HVAC control.

1: Get DL
2: for each time step k:
3: for each HVAC n:
4: Calculate Bn

tk by solving (7)
5: end for
6: sorted_hvac ← sort based on Bn

tk

7: sum=0
8: full= false
9: for HVACn in sorted_hvac:
10: if + ⩽ and notB D B full:n n n

t maxk

11: if + ⩽P sum D :HVAC Ln

12: =U 1n
tk

13: = +sum sum PHVACn

14: else:
15: =U 0n

tk

16: full= true
17: else:Fig. 3. Alternate view of the problem.

Fig. 4. Transform the problem to represent the time-to-boundary as the height of each
ball.
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18: =U 0n
tk

19: end for
20: end for

The Dn in the above algorithm is the time by which the time-to-
boundary of HVACn is delayed (increased) when it is controlled in a
control period. It depends on house properties and HVAC capacity. Its
numerical value can be determined by calculating the difference be-
tween two time-to-boundary values obtained using (7): one–chosen at
the current temperature, and the other–made equal to the temperature
attained when the HVAC cools the building for one control period. For
the proof of optimality of the Algorithm 2 in Appendix A, it is assumed
that Dn remains constant for any choice of the starting temperature.
This is a valid assumption as Dn has been numerically verified to vary
less than 5% when the temperature falls in a narrow region, and is
regarded to be insignificant enough to be treated as constant for the
proof.

This method of controlling HVACs by holding their state during
each control period has also been called deadband free control and is
shown effective in eliminating demand drift [51], which is a phenom-
enon where the aggregated power drifts away from the dispatched
power due to natural dispersion of thermostat states [52]. The in-
spiration for the JA comes from the classical earliest-deadline-first job
scheduling algorithm where the time-to-boundary is equivalent to
deadline for the job of controlling the HVAC. More details on the JA and
its proof of optimality are available in Appendix A.

For this study, shortest acceptable HVAC cycling time is assumed to
be 5min and the same is chosen to be the length of the control period.
However, the methods developed in this paper would be applicable to
any length of the control period. Note that while HVAC should not be
cycled arbitrarily fast, the shortest acceptable interval is chosen as it
provides the best chance of satisfying the constraint for the longest
time. This is because, smaller time steps enable the algorithm to switch
between different HVACs more frequently thereby allowing indoor
temperatures to remain within the bounds for longer time.

3.3. Determination of function fO

Algorithm 3 shown below serves to complete the function f D( )O Lk
that determines if the HVAC control dictated by Algorithm 2 can satisfy
the comfort requirement of all customers (i.e., maintaining all house
temperature within bounds) while keeping the aggregated HVAC power
below DLk.

Algorithm 3. Algorithm for f D( )O Lk .

1: for each time step k:
2: for each HVAC n:
3: Calculate TA

t
n

k using equation(4)

4: if not ⩽ ⩽θ T θlower A
t

uppern n
k

n:
5: return false
6: else:
7: Assign Un

tk using Algorithm 2
9: end for
10: end for
11: return true

At the beginning of each control period during a DR event, the
temperature of each HVAC is calculated using (4). If any of the tem-
perature is found to violate the comfort constraint, then it is deemed
unfeasible to meet the requirement of keeping the power below DLk and
the function returns false. If all temperature is found to be within the
comfort constraints, then the set of HVAC that needs to be turned on are
determined using Algorithm 2. Their states are updated to ON, and the

algorithm moves to the next control period. The process repeats, and if,
by the end of the DR event, none of the temperature violates the
comfort constrain, it is deemed feasible to keep the power below DLk
and the function returns true.

4. Simulation study

A simulation study was conducted using SimPy [53] – a python
based discrete event simulation library where system states are only
updated at discrete times [54]. The thermal model of a residential
house was developed following the simplified version of the house_e
model in GridLAB-D [50,55]. There are two sources of internal heat
gain in a residential building: from appliance use and from human
occupancy. In this study, internal heat gain from human occupancy and
appliance use are modelled using a single variable and are calculated
from the house floor area as per [50,55].

The study was conducted on the aggregation of 200 residential
houses assumed to be located in Chicago, Illinois. Typical metrological
year outdoor temperature and solar insolation data for the same loca-
tion were used. Thermal parameters for houses were randomized as
follows:

• Floor area was randomized using a normal distribution with the
mean area of 2200 square feet and the standard deviation of 400
square feet.

• Aspect ratio of each house was varied uniformly from 1.2 to 1.8.

• R values for windows were varied normally with mean of 1/0.6 and
standard deviation of 0.2. R values of doors were varied between 4
and 6.

• Air change was varied from 40% to 80% per hour.

• AC rated capacities were calculated based on floor area [55,50], and
rounded to nearest 6000 BTU/h.

The simulation study is conducted on a computer with core-i7 3280
3.6Ghz CPU and 16 GB RAM. For the case with 200 houses, the
Algorithm 1 took 2.29 s to find the optimum DL, while each step of
Algorithm 2, which is used to find the state of HVACs during each
control interval in real-time, took only 0.009 s per step. In order to
confirm the growth order (the time complexity) of these algorithm,
simulation was also conducted for 50, 100, 500, 1000, 2000 and 4000
houses and the solution time measured. The result is demonstrated in
Fig. 5. It can be seen that the solution for real-time scheduling can be
obtained in sub-second time even for large number of houses. This
demonstrates the feasibility of implementing this algorithm in the real

Fig. 5. Solution Time growth rate with problem size.
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world. The optimal demand limit can also be found out moderately
quickly (under a minute), and since the DR requirement is generally
communicated several hours in advance by the utility, it makes the
algorithm feasible to be used to find the optimal load reduction as well.
The measured linear growth order is consistent with the theoretical
growth order that can be inferred from the structure of the algorithms.

The study compares the proposed JA based load control approach
with the set-point change based method which is a standard load
control method in a transactive control based approach. To make the
comparison fair, the upper and lower comfort boundaries during the
event were kept the same for both approaches, and were chosen to be
82°F and 72°F respectively. This comfort boundary matches the
22–28 °C boundary used in [26] and is based on the ASHARE standard
[56]. In order to help the customers, make rational choice about their
comfort limits, the aggregator can provide some charts that gives
guidelines based on comfort vs savings. To ensure the temperature did
not exceed the upper comfort boundary of 82°F during the event, for
set-point change based method, the thermostat set-point was set to 81°F
with 1°F deadband. During the non-DR period, the set-point was kept at
77°F. The simulation was conducted for a day in August and the DR
event was assumed to start from 14:00 to 18:00.

4.1. Base case: no control

In the case without any control, HVAC set-points of all houses were
held constant at 77°F throughout the day. The aggregated HVAC power
consumption of all 200 houses, together with outdoor and indoor
temperature profiles, are shown in Fig. 6. As shown, the aggregated
HVAC power starts close to zero in early morning and gradually rises in
the afternoon owing to increasing outdoor temperature; and shaves off
towards the evening as the temperature falls. It is worth noting that the
peak power is 355.4 kW at around 14:47. Indoor temperatures of each
house remains within 1°F deadband around the 77°F set-point, except
for the early morning period when the temperature is low due to cooler
outdoor temperature, and no HVACs run during this period as is evident
by zero power consumption before 5 a.m.

4.2. Case I: Juggling algorithm (JA)

By applying the proposed JA discussed in Section 3, the optimal
demand limit from 14:00 to 18:00 was found at 118.87 kW. The result
of controlling the thermostats according to the JA is shown in the Fig. 7.
As shown in the close-up, the aggregated power has been cleanly lim-
ited to the calculated optimal value. During the DR event period, the
minimum aggregate HVAC power is 115.14 kW which is 3.1% less (or
3.73 KW less) than the limit. This is considered an acceptable tolerance

and is equivalent to the power of one HVAC unit.
Indoor temperatures of individual houses are identical to the base

case up until the start of the DR event, at which point indoor tem-
perature start rising. Notice that temperatures of some houses actually
fall at the beginning because the HVACs that are selected to run during
the first control period operate for the whole 5-min control intervals (as
long as the house temperatures do not go below their lower comfort
boundaries). Towards the end of the DR event, almost all houses’ indoor
temperatures approach their upper boundaries (but none exceeds it),
signifying the optimal use of resources.

There is a prominent peak in the aggregated HVAC power after the
DR event ends, and this is a consequence of resuming the set-point
based control at 77°F, which is much lower than houses’ indoor tem-
perature at the end of the DR event. This problem is tackled in Case III
discussed in sub-Section D.

4.3. Case II: Set-point change based control

In the case of set-point change based control, set-points of all
thermostats were raised during the DR event to achieve the desired
power reduction. The result is shown in Fig. 8.

While there is an immediate power reduction (to 0 kW) at the start
of the DR event, the aggregated power creeps up and reaches the peak
of 223.45 kW, which is much higher than the case of the JA at
118.87 kW. Also the average indoor temperature are higher than that in
Case I and they reach the upper limit of 82°F much sooner too. The
reason for better performance of Case I than this case is because, in this
case, during the initial stage of the DR event, the aggregated power
remains zero (because the temperatures of all thermostats are much
lower than their set-point of 81°F), but during the later stage, much
higher power is required to keep the temperature within boundary. In
case I, however, the power consumption of 118.87 kW is always
maintained, which is used for pre-cooling some of the houses at the
beginning stage of the DR which becomes valuable at the later stage. It
should be noted that this pre-cooling phenomenon is an inherent fea-
ture of our JA and no special programming is required for this.

Fig. 6. Aggregated HVAC power, outdoor and indoor temperatures in the base case
without control (Base Case).

Fig. 7. Aggregated HVAC power, outdoor and indoor temperatures with the JA (Case I).
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4.4. Case III: JA with demand restrike mitigation methods

Two approaches are explored for limiting the demand restrike seen
in Case I. They are explained below:

4.4.1. Using demand restrike limit
A demand limit can be imposed on the aggregated power after the

DR event using the same JA. This DR limit can be for a duration of DT

such that the demand restrike is prevented from occurring. The value of
DT can be conservatively set equal to at least half of the event duration
or its optimal value can be obtained by performing an iterative binary
search similar to Algorithm 1 that is used to find optimal DL. As a case
study, the result of limiting the aggregated power to the pre-DR event
value of 270.79 kW for up to 35min after the event is shown in Fig. 9.

Fig. 9 illustrates that the restrike has been successfully suppressed at
the pre-DR event level of 270.79 kW. The recovery of indoor tempera-
tures has been delayed, however. While indoor temperatures of all
houses return to the 74°F set-point± 1°F deadband in 25min in Case I,
it now 42min in Case III. This is the price paid to suppress the demand
restrike.

4.4.2. Using conservative demand limit (CDL)
One might think that the demand restrike is associated with the low

value of demand limit, and as such it is tempting to use a more liberal
demand limit in hope of decreasing the restrike. One such case where
the DR limit is made equal to the 1.25 times the optimal value used in

Case I is shown in Fig. 10.
It can be observed that the demand restrike only decreases from

696.85 kW to 577.72 kW even when the demand limit was increased.
The indoor temperatures also never reach near the upper boundary of
82°F (hinting non-optimal utilization), and they quickly return back to
the normal values. This demonstrates that increasing the DR-limit im-
posed during the DR-event does not significantly help with reducing the
demand restrike, as the restrike occurs because of loss of state diversity
[52].

4.5. Case IV: Effect of randomized constraints

In all case studies so far the desired set-points of all houses were
assumed at 77°F and the upper temperature boundary was assumed at
82°F. To understand the impact of randomizing these parameters on the
efficacy of the proposed approach, a simulation was conducted that
randomized these parameters. The result of one such simulation which
is similar to Case III.1 except for the randomized constraints is shown in
Fig. 11. Interestingly, the results remain almost the same

The aggregated power and the average indoor temperature follows
almost the same profiles as Case III.1. Even the individual temperatures,
although much different than those in Case III.1 at first glance, follow
similar profiles in terms of their own set-points and boundaries. This
demonstrates that the study so far is directly applicable for the real-
world case where houses have different preferred set-points and com-
fort preference.

Fig. 8. Aggregated HVAC power, outdoor and indoor temperatures with the set-point
change based control (Case II).

Fig. 9. Aggregated HVAC power, outdoor and indoor temperatures with JA and a restrike
limit (Case III.1).

Fig. 10. Aggregated HVAC power, outdoor and indoor temperatures with JA with con-
servative demand limit (Case III.2).

Fig. 11. Aggregated HVAC power, outdoor and indoor temperatures with JA, demon-
strating randomized constraints (Case IV).

R. Adhikari et al. Applied Energy 217 (2018) 166–177

173



4.6. Summary and other observations

Results of all case studies are summarized in Table 1.
From the table, it can be seen that the peak power during DR is

reduced in all cases – but the proposed JA yields the optimal control,
i.e., limiting the peak power to around 118 kW (Cases I, III.1 and IV).

As the proposed algorithm could cause demand restrike, mitigating
this problem by extending the JA after the DR event (Case III.1) proves
to reduce the restrike by more than half (i.e., from 696 kW to around
270 kW).

After the DR event, it takes some time for the temperatures to get
back to their regular values for all cases. It is 25min with the proposed
JA (Case I), and 42min when mitigating the impact of demand restrike
(Case III.1). This delayed temperature recovery is the price paid for the
restrike mitigation. The discomfort associated with the demand re-
sponse can be quantified using comfort violation index, which measures
the degree-hour time integral of the absolute difference between the
desired temperature (which is 77°F) and the actual temperature [43].
The fifth column gives the average comfort violation index for the time
interval from 14:00 to 19:00 as that is the time interval influenced by
the DR. As can be seen, the setpoint change based control in Case II has
the worst performance. The distribution of the comfort violation among
different houses is shown in Fig. 12:

Fig. 12 shows that proposed algorithm (Case III.1) keeps the comfort
violation below the setpoint control (Case II) based method for all the
cases. But unlike the setpoint control based method, there is quite a
variation among houses. This is because, unlike in [43] where even
distribution of comfort violation was one of the objective, the objective
here is to maximize the load reduction while only meeting the comfort

requirement. As such, the algorithm might exploit some houses more
than the others to maximize the load reduction. In order to make this
fair to the customers, the aggregator can make the rewards proportional
to the comfort violation endured by the house.

When looking at the energy consumption (kWh) in Table 1, all DR
cases provide lower energy consumption than the base case. This is be-
cause the comfort requirement is relaxed during the DR event which al-
lows HVAC to run less frequently during the event, thus saving energy.

In terms of average AC cycles, it is interesting to see that the average
number of AC cycles actually decreases in all cases compared to the
base case. It reduces to an average of 59.17 cycles with Case III.1
compared to average of 66.63 cycles in the base case. This decrease is
possibly because during DR event a large fraction of the HVACs remains
off and only a small fraction is selected to run during each control in-
terval. This shows that the proposed approach will not result in reduced
operating life of the AC due to increased AC cycling.

Although the problem was formulated to make the aggregated
power below the maximum limit, DL, it has been observed that the
aggregated power is always maintained very close to this limit. As such
the work can be extended for applications where the aggregated power
needs to track a reference value.

5. Conclusion

The novel algorithm for an advanced direct load control mechanism
for HVAC presented in this paper was found to successfully reduce the
peak power by up to 60% while keeping indoor temperatures within
preset limits. This is much better than typical set-point based control
that reduced the power demand by 26% under the same temperature
limits. This is an improvement of 130% in demand reduction potential.
The proposed algorithm was also successful in efficiently limiting the
DR restrike, a feature not typically available in other approaches. Since,
in terms of hardware, the proposed algorithm only requires the pre-
sence of IoT-based smart thermostats in buildings, demand aggregators
can readily use it without additional infrastructures. This can be a great
business opportunity for aggregators to sell demand response capability
as a service to the grid.
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Appendix A

Consider the transformed view of the problem in Fig. 4. Without loss of generality, let us assume that the control period (T) from tstart to tend be
divided into Z intervals of length L, which is 5min, so that Z=T/L. During each control period, JA selects a subset of HVACs to run according to
Algorithm 2.

Table 1
Summary of simulation results.

Control
method

Peak power
during DR (kW)

Peak power after
DR (kW)

Time to normal
temp

Comfort violation
degree Hours (°F-h)

Energy Consum-
ption (MWh)

Average AC
cycles per day

No Control 302.88 117.4 – 2.10 2.85 66.63
Case I 118.87 696.85 00:25 12.78 2.73 58.75
Case II 223.45 700.85 00:25 16.21 2.70 61.64
Case III.1 118.87 270.79 00:42 13.33 2.72 59.17
Case III.2 148.58 577.72 00:15 9.57 2.76 59.77
Case IV 120.7 268.13 00:40 13.24 2.74 59.80

Fig. 12. Distribution of comfort violation index among the houses.
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At the beginning of any control period k, the time-to-boundary for HVAC n that has previously been ran x times can be obtained as:

= + ∗ − ∗ − − = ∀B B D x L k x g k x n( 1 ) ( , )n
t

n
t

n n
k 1 (A1)

where

tk is the control period of concern
Bn

tk is the time-to-boundary for the HVAC n, at the beginning of control period tk
Bn

t1 is the time-to-boundary for the HVAC n, at the beginning of DR event
Dn is the time by which the time-to-boundary of HVACn is delayed when it is controlled in a control period (defined in Algorithm 2)
x is the number of times HVAC n has already run by control period tk
L is the control period length (5-min)

The objective is to ensure that, at all control periods, indoor temperatures of all houses are within the bounds, which is equivalent to ensuring
that

⩽ ⩽ ⩽ ⩽ +B B for k Z0 1 1n
t

n
maxk

This enables us to reformulate this problem as a job scheduling problem [57]. Let us define a job Jn
i as the task of running HVAC n for the i-th

time. The job Jn
i can be delayed until the time to boundary for HVAC n would become negative. Hence, the deadline (dJn

i) for job Jn
i can be obtained as
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Similarly, the job Jn
i can be scheduled as soon as its time to boundary does not exceed Bn

max when controlled. That is, the release time (r Jn
i ) can be

obtained as:
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Hence, the deadlines and release times for Jn
i is fixed and independent of how other jobs are scheduled. The only constraint is the precedence

constraints where Job Jn
i must occur strictly before job +Jn

i 1. It should be noted that a feasible schedule is an optimal schedule in our case, because if
the optimal schedule were to finish scheduling the jobs earlier than the feasible schedule, the number of parallel jobs would be decreased in the next
iteration of the Algorithm 1 and so-on until only the optimal schedule remains feasible. In rest of the Appendix A, feasible and optimal is used
interchangeably when talking about the schedule.

Now, let the set of jobs selected to run during the interval i by the optimal scheduling algorithm (O) be Oi, and that by the proposed JA (A) be Ai.
Let JA agree with the optimal algorithm for up to some control period k such that ⩽ <k n0 . That is,

= <O A for i ki i

≠ =O A for i ki i

Let F jobs be scheduled during the interval k by the optimal algorithm and be given by:

= …O O O O{ , , }k k k k F,1 ,2 ,

And let G jobs be scheduled during the interval k by JA and be given by:

= …A A A A{ , , }k k k k G,1 ,2 ,

These jobs are sorted in the ascending order of their deadlines. Note that F ≠ G since the number of jobs scheduled during each control period by
the algorithms can be different because of different weights. Also, it is straightforward to show that JA as defined in Section 3 is equivalent to
selecting jobs with earliest deadlines that have been released such that the sum of their weight is just less than the demand limit. It is assumed that
for all k, due to the weight constraint, there is no more room for any other job in Ak.

The algorithm A is now proved to be optimal using an exchange argument [58], which is a proof technique where a test algorithm is proved
optimal by gradually modifying the optimal algorithm and finally making it the same as the test algorithm, and never losing the optimality in the
process. Below, it is shown that the optimal algorithm can be modified into the JA without losing its optimality.
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−A Ok k cannot be empty because if Ok contains all jobs of Ak then it cannot have any space for more jobs and it would be exactly equal to Ak
negating our presumption of that ≠O Ai i for i= k. −O Ak k can be empty, though.

Let us assume that Jp
x
α
α (for all ⩽ ⩽j α F ) occurs at some later time at t= rα at O. Or, it does not occur at all in O. For example, Jp

x
F
F if present,

occurs at t= rF . If it does not exist, it is assumed to exist after the control period, so that rF =Z+1.
Assume that for HVAC qβ (for all ⩽ ⩽j β G), there are vβ number of jobs that occur between time ⩽ <k t rF in O. These jobs occur at times =t sγ

(for all 0 ⩽ <γ v )β and are denoted by
+Jq

y γ
β
β . This includes the job Jq

y
β
β at t= k, and this means =s k0 (because

+Jq
y 0
β
β is assumed to run at =t s0). It is

possible that vβ =1, which means only Jq
y
β
β job occurs for HVAC qβ in O during that time.
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Now, create a new schedule O∗ by modifying the schedule O as illustrated in the Fig. A1. The jobs in −A Ok k are moved from various places in O (if
they exist in O) to t= k in O∗. If any of the jobs in −A Ok k does not exist in O, they are simply created at t= k at O∗ (instead of moving).

All the jobs
+Jq

y γ
β
β are moved from =t sγ in O to = +t sγ 1 in O∗ and svβ is defined to be equal to rF .

It is next shown that these changes still ensure that all jobs are run after release times and before deadlines in O∗ (if it does in O, and it should
since it is assumed to be an optimal (feasible) algorithm).

The jobs −A Ok k are run before deadline in O∗ at =t k, since they were run later than =t k (or not run at all) in O. Also, they will run after release
in O∗ since, they run in A at =t k, and A only runs jobs after their release time.

Jobs Jq
y
β
β have deadline later than any jobs in Ak because Jq

y
β
β are not present in Ak and Ak has jobs with earliest deadlines that are released by t= k

(and Jq
y
β
β are released by t= k since they are present inOk). Job Jp

x
F
F is in Ak and it runs at t= rF inOk, so jobs Jq

y
β
β must have deadline after =t rF . Since

for any job >+d dJ Ji i1 , all jobs
+Jq

y γ
β
β have deadline after =t rF and are guaranteed to run before deadline in O∗ since they are run at or before =t rF .

Also all jobs
+Jq

y γ
β
β are run later in O∗ than in O, so they are guaranteed to be run after release.

Since all other jobs in O are left unaffected in O∗, they must continue to run before deadline and after release. Hence, O∗ is still feasible schedule.
When this process is completed:

= ⩽∗O A for i ki i

≠ = +∗O A for i k 1i i

That is, O∗ agrees with A for one more time step than O, and O∗ still runs all jobs before deadline and after release time. It should be noted that O∗
may not meet the weight constraint at this point, but that is fine since this is only the intermediate step of the exchange process. This procedure can
then be repeated for all future time steps, such that =∗O A for all ii i , which means O∗= A. Since O∗ always remains feasible, finally when O∗
becomes equal to A, it should remain feasible and also meet the weight constraint because A does. It was argued before that a feasible algorithm is
optimal in our case. This concludes the proof that A is optimal.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apenergy.2018.02.085.

References

[1] Gillingham K, Newell R, Palmer K. Retrospective examination of demand-side en-
ergy efficiency policies; 2004.

[2] Spees K, Lave L. Demand response and electricity market efficiency. Electr J 2007.
[3] Qdr Q. Benefits of demand response in electricity markets and recommendations for

achieving them. US Dep Energy 2006.
[4] Vardakas JS, Zorba N, Verikoukis CV. A survey on demand response programs in

smart grids: pricing methods and optimization algorithms. IEEE Commun Surv
Tutorials 2015;17(1):152–78.

[5] Albadi M, El-Saadany E. A summary of demand response in electricity markets.
Electr power Syst Res 2008;78(11):1989–96.

[6] Siano P. Demand response and smart grids—a survey. Renew Sustain Energy Rev
2014;30:461–78.

[7] Paterakis NG, Erdinç O, Catalão JPS. An overview of demand response: key-ele-
ments and international experience. Renew Sustain Energy Rev March
2017;69:871–91.

[8] Palensky P, Dietrich D. Demand side management: demand response, intelligent
energy systems, and smart loads. IEEE Trans Ind Informatics August
2011;7(3):381–8.

[9] Samad T, Kiliccote S. Smart grid technologies and applications for the industrial
sector. Comput Chem Eng 2012;47:76–84.

[10] Bhattacharyya K, Crow ML. A fuzzy logic based approach to direct load control.
IEEE Trans Power Syst May 1996;11(2):708–14.

[11] Molina A, Gabaldon A, Fuentes JA, Canovas FJ. Approach to multivariable

predictive control applications in residential HVAC direct load control. In: Power
Engineering Society Summer Meeting (Cat. No.00CH37134), vol. 3; 2000. p.
1811–16.

[12] Chi-Min C, Tai-Long J, Yue-Wei H. A direct load control of air-conditioning loads
with thermal comfort control. In: Power Engineering Society General Meeting,
2005, vol. 1. IEEE; 2005. p. 664–69.

[13] Tran-Quoc T, Sabonnadiere J, Hadjsaid N, Kieny C. Air conditioner direct load
control in distribution networks. In: 2009 IEEE Bucharest PowerTech; 2009. p. 1–6.

[14] Katipamula S, Lu N. Evaluation of residential HVAC control strategies for demand
response programs (SYMPOSIUM PAPERS - CH-06-7 demand response strategies for
building systems), ASHRAE Trans 2006; 112(1): 535. p. 1–12.

[15] Fuller JC, Schneider KP, Chassin D. Analysis of residential demand response and
double-auction markets. In: 2011 IEEE power and energy society general meeting;
2011. p. 1–7.

[16] Schneider KP, Fuller JC, Chassin D. Analysis of distribution level residential de-
mand response. In: 2011 IEEE/PES Power Syst. Conf. Expo. PSCE 2011; , 2011.
p. 1–6.

[17] Adhikari R, Pipattanasomporn M, Kuzlu M, Bradley SR. Simulation study of
transactive control strategies for residential HVAC systems. In: 2016 IEEE PES
Innovative Smart Grid Technologies Conference Europe (ISGT-Europe); 2016.
p. 1–5.

[18] Zhang D, Li S, Sun M, O’Neill Z. An optimal and learning-based demand response
and home energy management system. IEEE Trans Smart Grid July
2016;7(4):1790–801.

[19] Xiao Jin, Yoon Chung Jae, Li Jian, Boutaba R, Won-Ki Hong J. Near optimal de-
mand-side energy management under real-time demand-response pricing. In: 2010

Fig. A1. Illustration of the exchange step at time step t= k.

R. Adhikari et al. Applied Energy 217 (2018) 166–177

176

http://dx.doi.org/10.1016/j.apenergy.2018.02.085
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0010
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0015
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0015
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0020
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0020
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0020
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0025
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0025
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0030
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0030
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0035
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0035
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0035
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0040
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0040
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0040
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0045
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0045
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0050
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0050
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0090
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0090
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0090


international conference on network and service management; 2010. p. 527–32.
[20] Mohsenian-Rad A-H, Wong VWS, Jatskevich J, Schober R. Optimal and autonomous

incentive-based energy consumption scheduling algorithm for smart grid. In: 2010
Innovative Smart Grid Technologies (ISGT); 2010. p. 1–6.

[21] Joe-Wong C, Sen S, Ha S, Chiang M. Optimized day-ahead pricing for smart grids
with device-specific scheduling flexibility. IEEE J Sel Areas Commun Jul.
2012;30(6):1075–85.

[22] Zhu Ziming, Tang Jie, Lambotharan S, Hau Chin Woon, Fan Zhong. An integer
linear programming based optimization for home demand-side management in
smart grid. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT); 2012.
p. 1–5.

[23] Kurucz CN, Brandt D, Sim S. A linear programming model for reducing system peak
through customer load control programs. IEEE Trans Power Syst
1996;11(4):1817–24.

[24] Pipattanasomporn M, Kuzlu M, Rahman S. An algorithm for intelligent home energy
management and demand response analysis. IEEE Trans Smart Grid Dec.
2012;3(4):2166–73.

[25] Wang Jidong, Sun Zhiqing, Zhou Yue, Dai Jiaqiang. Optimal dispatching model of
Smart Home Energy Management System. In: IEEE PES Innovative Smart Grid
Technologies; 2012. p. 1–5.

[26] Yoon JH, Bladick R, Novoselac A. Demand response for residential buildings based
on dynamic price of electricity. Energy Build Sep. 2014;80:531–41.

[27] Zhang W, Lian J, Chang C-Y, Kalsi K. Aggregated modeling and control of air
conditioning loads for demand response. IEEE Trans Power Syst Nov.
2013;28(4):4655–64.

[28] Mathieu JL, Koch S, Callaway DS. State estimation and control of electric loads to
manage real-time energy imbalance. IEEE Trans Power Syst Feb.
2013;28(1):430–40.

[29] Lu N. An evaluation of the HVAC load potential for providing load balancing ser-
vice. IEEE Trans Smart Grid Sep. 2012;3(3):1263–70.

[30] Vrettos E, Koch S, Andersson G. Load frequency control by aggregations of ther-
mally stratified electric water heaters. In: 2012 3rd IEEE PES Innovative Smart Grid
Technologies Europe (ISGT Europe); 2012. p. 1–8.

[31] Hao H, Sanandaji BM, Poolla K, Vincent TL. Aggregate flexibility of thermostatically
controlled loads. IEEE Trans Power Syst Jan. 2015;30(1):189–98.

[32] Li N, Chen L, Low SH. Optimal demand response based on utility maximization in
power networks. In: 2011 IEEE Power and Energy Society General Meeting; 2011.
p. 1–8.

[33] Reihani E, Sepasi S, Ghorbani R. Scheduling of price-sensitive residential storage
devices and loads with thermal inertia in distribution grid. Appl Energy Dec.
2016;183:636–44.

[34] Cole WJ, Rhodes JD, Gorman W, Perez KX, Webber ME, Edgar TF. Community-scale
residential air conditioning control for effective grid management. Appl Energy Oct.
2014;130:428–36.

[35] Bianchini G, Casini M, Vicino A, Zarrilli D. Demand-response in building heating
systems: A Model Predictive Control approach. Appl Energy Apr. 2016;168:159–70.

[36] Liu M, Shi Y. Model predictive control for thermostatically controlled appliances
providing balancing service. IEEE Trans Control Syst Technol Nov.
2016;24(6):2082–93.

[37] Zhou Y, Wang C, Wu J, Wang J, Cheng M, Li G. Optimal scheduling of aggregated

thermostatically controlled loads with renewable generation in the intraday elec-
tricity market. Appl Energy Feb. 2017;188:456–65.

[38] Nan S, Zhou M, Li G. Optimal residential community demand response scheduling
in smart grid. Appl Energy Jan. 2018;210:1280–9.

[39] Behboodi S, Chassin DP, Djilali N, Crawford C. Transactive control of fast-acting
demand response based on thermostatic loads in real-time retail electricity markets.
Appl Energy Jan. 2018;210:1310–20.

[40] Chassin DP, Rondeau D. Aggregate modeling of fast-acting demand response and
control under real-time pricing. Appl Energy Nov. 2016;181:288–98.

[41] Ma K, Yuan C, Yang J, Li J, Hu S, Wang Y. Controller design and parameter opti-
mization of aggregated thermostatically controlled loads for frequency regulation.
In: 2016 35th Chinese Control Conference (CCC); 2016. p. 10035–40.

[42] Liu M, Shi Y. Model predictive control of aggregated heterogeneous second-order
thermostatically controlled loads for ancillary services. IEEE Trans Power Syst May
2016;31(3):1963–71.

[43] Erdinc O, Tascikaraoglu A, Paterakis NG, Eren Y, Catalao JPS. End-user comfort
oriented day-ahead planning for responsive residential HVAC demand aggregation
considering weather forecasts. IEEE Trans Smart Grid Jan. 2017;8(1):362–72.

[44] Aalami HA, Moghaddam MP, Yousefi GR. Demand response modeling considering
Interruptible/Curtailable loads and capacity market programs. Appl Energy
2010;87(1):243–50.

[45] Pahwa A, Brice C. Modeling and system identification of residential air conditioning
load. IEEE Trans Power Appar Syst Jun. 1985;PAS-104(6):1418–25.

[46] NYISO. Special case resources: evaluation of the performance and contribution to
resource adequacy; 2012.

[47] NYSEG. Distribution Load Relief Program. Available: https://www.nyseg.com/
YourBusiness/demandresponse/distributionloadrelief.html. [Accessed 11.01.18].

[48] Sonderegger R. Dynamic models of house heating based on equivalent thermal
parameters; 1978.

[49] Taylor Z, Gowri K, Katipamula S. GridLAB-D technical support document:
Residential end-use module version 1.0. Oak Ridgel; 2008.

[50] “Residential module user’s guide - GridLAB-D Wiki.” Available: http://gridlab-d.
shoutwiki.com/wiki/Residential_module_user%27s_guide. [Accessed 26.06.17].

[51] Chassin DP, Stoustrup J, Agathoklis P, Djilali N. A new thermostat for real-time
price demand response: Cost, comfort and energy impacts of discrete-time control
without deadband. Appl Energy 2015;155:816–25.

[52] Lu N, Chassin DP. A state-queueing model of thermostatically controlled appliances.
IEEE Trans Power Syst Aug. 2004;19(3):1666–73.

[53] Meurer A, et al. SymPy: symbolic computing in Python. PeerJ Comput Sci Jan.
2017;3.

[54] Matloff N. Introduction to discrete-event simulation and the simpy language. Davis,
CA. Dept Comput. Sci. Univ. Calif. Davis. Retrieved August, vol. 2; 2008. p. 2009.

[55] “GridLAB-D House_e model source code.” Available: http://www.gridlabd.org/
documents/doxygen/latest_dev/house__e_8cpp-source.html. [Accessed 27.06.17].

[56] ANSI/ASHRAE 55-2010. Thermal environmental conditions for human occupancy,
ANSI/ASHRAE Standard 55, vol. 2010; 2010. p. 42.

[57] Pinedo M. Scheduling: theory, algorithms, and systems, 3rd ed.; 2016.
[58] Roughgarden Tim, Sharp A, Wexler T. 120 Guide to Greedy Algorithms |

Mathematical Optimization | Algorithms.” https://www.scribd.com/document/
295073643/120-Guide-to-Greedy-Algorithms [accessed 23.06.17].

R. Adhikari et al. Applied Energy 217 (2018) 166–177

177

http://refhub.elsevier.com/S0306-2619(18)30210-1/h0105
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0105
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0105
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0115
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0115
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0115
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0120
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0120
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0120
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0130
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0130
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0135
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0135
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0135
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0140
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0140
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0140
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0145
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0145
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0155
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0155
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0165
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0165
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0165
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0170
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0170
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0170
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0175
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0175
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0180
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0180
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0180
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0185
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0185
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0185
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0190
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0190
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0195
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0195
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0195
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0200
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0200
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0210
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0210
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0210
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0215
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0215
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0215
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0220
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0220
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0220
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0225
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0225
https://www.nyseg.com/YourBusiness/demandresponse/distributionloadrelief.html
https://www.nyseg.com/YourBusiness/demandresponse/distributionloadrelief.html
http://gridlab-d.shoutwiki.com/wiki/Residential_module_user%27s_guide
http://gridlab-d.shoutwiki.com/wiki/Residential_module_user%27s_guide
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0255
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0255
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0255
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0260
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0260
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0265
http://refhub.elsevier.com/S0306-2619(18)30210-1/h0265
http://www.gridlabd.org/documents/doxygen/latest_dev/house__e_8cpp-source.html
http://www.gridlabd.org/documents/doxygen/latest_dev/house__e_8cpp-source.html
https://www.scribd.com/document/295073643/120-Guide-to-Greedy-Algorithms
https://www.scribd.com/document/295073643/120-Guide-to-Greedy-Algorithms

	An algorithm for optimal management of aggregated HVAC power demand using smart thermostats
	Introduction
	Framework and problem formulation
	Proposed solution
	Determination of optimal DL
	Optimal HVAC control for a given DL
	Determination of function fO

	Simulation study
	Base case: no control
	Case I: Juggling algorithm (JA)
	Case II: Set-point change based control
	Case III: JA with demand restrike mitigation methods
	Using demand restrike limit
	Using conservative demand limit (CDL)

	Case IV: Effect of randomized constraints
	Summary and other observations

	Conclusion
	Acknowledgment
	Appendix A
	Supplementary data
	References




