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H I G H L I G H T S

• Reduced forecasting errors compared to conventional time-series model.

• Capable of handling high level uncertainty in the building load.

• Multi-step formulated convolutional neural network provides the highest accuracy.

• High computational efficiency is also offered by convolutional neural network.
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A B S T R A C T

Load forecasting problems have traditionally been addressed using various statistical methods, among which
autoregressive integrated moving average with exogenous inputs (ARIMAX) has gained the most attention as a
classical time-series modeling method. Recently, the booming development of deep learning techniques make
them promising alternatives to conventional data-driven approaches. While deep learning offers exceptional
capability in handling complex non-linear relationships, model complexity and computation efficiency are of
concern. A few papers have explored the possibility of applying deep neural networks to forecast time-series load
data but only limited to system-level or single-step building-level forecasting. This study, however, aims at filling
in the knowledge gap of deep learning-based techniques for day-ahead multi-step load forecasting in commercial
buildings. Two classical deep neural network models, namely recurrent neural network (RNN) and convolutional
neural network (CNN), have been proposed and formulated under both recursive and direct multi-step manners.
Their performances are compared with the Seasonal ARIMAX model with regard to accuracy, computational
efficiency, generalizability and robustness. Among all of the investigated deep learning techniques, the gated 24-
h CNN model, performed in a direct multi-step manner, proves itself to have the best performance, improving the
forecasting accuracy by 22.6% compared to that of the seasonal ARIMAX.

1. Introduction

The growing energy demand has raised concerns worldwide over
the issue of environmental degradation. According to the U.S. Energy
Information Administration Monthly Energy Review [1], 40% of the
total energy consumption comes from buildings. In the smart grid
paradigm, a number of innovative techniques have been introduced
targeting improvements in both the power grid and building energy
efficiency, including demand response (DR) [2] and demand-side
management [3,4]. Buildings have been transformed from pure custo-
mers into prosumers who actively participate in power grid operation,
providing various kinds of grid services, including peak demand cur-
tailment [5,6], operation reserve [7] and frequency regulation [8].

Such a transformation has led to the shifted interest from system-level
load forecasts to building-level load forecasts [9]. From the perspective
of electric utilities, accurate building-level load forecasts ensure the
effectiveness of both pre-DR resource allocation and post-DR perfor-
mance evaluation (i.e., baseline identification) [10,11]. From the per-
spective of building owners, understanding how a building load profile
fluctuates across time is the first step before conducting a building
energy retrofit [12].

However, compared with the system-level load forecasting, an ac-
curate building-level load prediction can be quite challenging, espe-
cially for those buildings with a large proportion of Heating, ventila-
tion, and air-conditioning (HVAC) loads and relatively irregular usage
patterns [13]. Apart from the complex nature of building thermal
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physics, a large amount of uncertainties also complicate the problem.
While weather variance impacts the building load externally, irregular
occupants behavior adds even more randomness to the load internally
[14].

Luckily, buildings nowadays are not only energy-intensive but also
information-intensive due to the deployment of building automation
system (BAS) [15,16]. Such plentiful building-level data help with the
data-driven analysis of building load behaviors. High-speed evolution
of analytics tools, on the other hand, continuously increases the effec-
tiveness of data-driven models. Most existing load forecasting models
use non-DL techniques, ranging from the simplest multiple linear re-
gression (MLR) [17,18], autoregressive integrated moving average
(ARIMA) [19,20], support vector regression (SVR) [21,22] to the most
sophisticated artificial neural network (ANN) [23,24]. Hybrid predic-
tion model combining the capabilities of these non-DL techniques is
also discussed in [25]. Apart from load forecasting, these techniques
have also been widely applied for predicting solar PV generation [26],
wind generation [27] and electricity price [28]. With the huge success
DL techniques made in solving complex statistical problems, re-
searchers also started searching for the DL-driven solutions for load
forecasting applications [29,30]. Essentially, deep neural networks
boost the power of ANN via deepening its layers and leveraging its
structures. These learning methods have been widely implemented to
solve natural language processing and speech/image recognition pro-
blems. However, there is a limited discussion on topics related to time-
series day-ahead building-level load forecasts.

Within the non-DL scope, ARIMAX has overall competitive ad-
vantages for load forecasting. Compared to MLR, it is more capable of
capturing the temporal dependency; compared to SVR and ANN, it
shows better interpretability. Unlike other supervised learning models,
ARIMAX is tailored for time-series modeling, where the sequence of
inputs matters. As the counterpart of ARIMAX in the DL community,
recurrent neural network (RNN) is used to tackle datasets with se-
quential correlations. Authors in [31] proposed two RNN structured

models for medium-to-long term predictions. Authors in [32] proposed
a pooling deep recurrent neural network (PDRNN) model to forecast
household load. Nevertheless, computational efficiency was not com-
pared. Also, this method requires an access to neighbors’ load data,
which is not practical. Authors in [33] innovatively created an auto-
regressive-like double-CNN model for asynchronous time-series fore-
casts. Experimental results demonstrated its predominant capability at
handling various kinds of asynchronous datasets, including household
load data. However, prior knowledge on the next day’s weather con-
dition is missing in the problem context [34]. Also, authors in [33] only
analysed the performance of single-step building-level load forecasts,
yet did not examine multi-step performance. The application of deep
learning on feature extraction was also discussed in [35], indicating a
significant improvement in prediction accuracy after applying an un-
supervised deep learning model. It is also found in [35] that supervised
deep learning did not show obvious advantages over other conventional
tools. However, the discussion was only limited to the perceptron deep
neural network, excluding the families of RNN and CNN networks.

Based on the literature outlined above, this study proposes DL-
driven models specific for day-ahead building-level load forecasts. Only
load forecasts on weekdays are discussed as most DR events happen on
weekdays. Contributions made in this study can be summarized as
follows:

1. Designed the gated RNN/CNN deep learning models for day-ahead
building-level load forecasts with knowledge of next-day weather
prediction.

2. Formulated the day-ahead building-level load forecasting problem
under both: direct multi-step and recursive multi-step manners.

3. Thoroughly analyzed properties of Seasonal ARIMAX (SARIMAX),
gated RNN and gated CNN models from aspects of accuracy, com-
putational efficiency, generalizability and robustness.

The paper is organized as follows: Section 2 discusses the design and

Nomenclature

Act¯ mean value of the actual building load series
Act actual load value
bC bias of candidate neuron
bf bias of forget gate
bi bias of input gate
bo bias of output gate
bs batch size
ct memory cell
c~t candidate memory cell
d non-seasonal differencing
D seasonal differencing
ft forget gate
ht hidden unit output
i index of observations in the testing dataset, ∈i N[1, ]
it input gate
j index of hours, ∈j n[1, ]
ks kernel size
L layer structure
m length of the input series X , equals to 24
N number of observations in the testing dataset
n length of the output vector y, equals to 1 or 24
NN number of neurons in each layer

×OConv D k1 _2 final output from the Conv1D × k2 layers
×OConv D1 _2 1 final output from the Conv1D ×2 1 layers

OG output from the linear gates
ot output gate
P seasonal AR order

p non-seasonal AR order
Pre predicted load value
Q seasonal MA order
q non-seasonal MA order
r learning rate
S time span of the repeating seasonal pattern
WC weight of candidate neuron
Wf weight of forget gate
Wi weight of input gate
Wo weight of output gate
X input of the model
x A air pressure series
x H humidity series
x L building load series
xt

L load value at time t
xO outdoor temperature series
xt

O outdoor temperature at timet
xW wind speed series
y output of the model
zt white noise at timet
Φk coefficient of the seasonal AR backshift operation at order

∈k P[1, ]
ϕk coefficient of the non-seasonal AR backshift operation at

order ∈k p[1, ]
Θk coefficient of the seasonal MA backshift operation at

order ∈k Q[1, ]
θk coefficient of the non-seasonal MA backshift operation at

order ∈k q[1, ]
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development of SARIMAX, gated RNN and gated CNN models. Section 3
briefly introduces the experimental setup, including the real-world
building load datasets, feature selection, data pre-process and model
configuration. Case studies are discussed in Section 4 with detailed
performance analysis. Conclusions and suggested future work are
summarized in Section 5.

2. Methodology

All of the models compared in this study fall into the time-series
category. The fact that time-series methods do not require additional
time indexing parameters differentiates them from other supervised
learning methods, e.g., MLR, SVR, and ANN, when handling time-series
data. As a result, time-series methods are able to detect the time de-
pendency (including hour-of-day and day-of-week) inherently em-
bedded in the input data and avoid potential issues brought about by
inappropriate time-index labeling. Candidate models discussed in this
paper are the most representative time-series methods from both DL
and non-DL scopes: the SARIMAX, the gated RNN and the gated CNN
models.

2.1. Problem formulation

To ensure a fair comparison, the three investigated models are
formulated into the same supervised learning framework. Where there
is an input matrix X that integrates the information of historical load
profile (x L) and outdoor temperature profile (xO), and also an output
vector y that refers to the predicted load profile with configurable
prediction horizon. In this study, only the outdoor temperature is se-
lected as the weather relevant feature as it shows a dominant influence
towards building load in comparison with other weather relevant
variables (i.e., air pressure, humidity and wind speed). Detailed clar-
ification for such selection is provided in Section 3.2. The day-ahead
building-level load forecast is basically a multi-step forecasting pro-
blem. It requires the model to predict the next 24-h load profile at
midnight (12 AM) of each day given the historical load behaviors and
prior knowledge about the next day’s weather forecast.

The day-ahead building-level load forecasting can be performed in
two different ways: recursive and direct.

• For the recursive multi-step, a one-hour prediction model is devel-
oped and implemented recursively 24 times to yield the day-ahead
load forecast. The predicted value from the previous time step is fed
as one of the inputs to the prediction model of the subsequent step.

• For the direct multi-step, on the other hand, a 24-h prediction model
is developed to generate the day-ahead load forecast at once.

To fully test the functionaliti of different time-series models, both
the one-hour prediction models and the 24-h prediction models are
developed and compared.

2.2. Seasonal ARIMAX model

Seasonal ARIMAX (SARIMAX) identifies the time-series patterns
inside the series while capturing the linear covariance between target

variable and exogenous variables. Such time-series patterns and cov-
ariance are summarized in Table 1, with regard to building-level load
profiles.

The standard seasonal ARIMAX model follows the notation of
×p d q P D Q SARIMAX( , , ) ( , , ) , where p =non-seasonal auto-re-

gressive (AR) order, d =non-seasonal differencing, q=non-seasonal
moving average (MA) order, P= seasonal AR order, D=seasonal dif-
ferencing, Q= seasonal MA order, S =time span of the repeating
seasonal pattern. Let xt

L denotes the load value at time t , then the
ARIMAX model can be mathematically expressed in Eqs. (1) and (2)
with the backshift operator B. Where zt and xt

O represent the white
noise and the exogenous outdoor temperature covariate at time t , re-
spectively.∇ = − −x x xs t

L
t
L

t S
L and ∇ = − −x x xt

L
t
L

t
L

1 represent differencing
operations.

∇ ∇ = +B ϕ B x βx B θ B zΦ( ) ( ) Θ( ) ( )S
S
D d

t
L

t
O S

t (1)

Where

= − − ⋯−B B BΦ( ) 1 Φ ΦS S
P

PS
1

= − − ⋯−ϕ B ϕ B ϕ B( ) 1 p
p

1

= + + ⋯+B B BΘ( ) 1 Θ ΘS S
Q

QS
1

= + + ⋯+θ B θ B θ B( ) 1 q
q

1 (2)

2.3. Gated RNN model

RNN is a class of neural networks that are able to recurrently pro-
cess sequential inputs. Such a capability is enabled by the internal time
loops at each hidden layer unit, where the output of the unit at time
step t is taken as the input for the next step t+ 1. Long short-term
memory units (LSTMs) have been proposed for addressing the gradient
vanishing problem faced by vanilla RNN hidden units [36]. The intui-
tion behind this approach is to maintain the memory property of the
vanilla RNN units while being able to filter out redundant or misleading
information through a long short-term gating mechanism.

Apart from the original hidden unit output (h )t that is utilized to
restore short-term memory immediately passed from previous time
step, an internal memory cell (ct) is introduced for restoring the long-
term memory. Unlike the vanilla RNN unit, which has only one neuron,
there are four neurons in the LSTM unit. One neuron works as a tangent
function providing the candidate memory cell (c~t ), computed using Eq.
(3); the other three neurons work as sigmoid functions, controlling the
flow of information, i.e., forget gate ( ft), input gate (it), and output gate
(ot), as given in Eq. (4). Based on the outputs of three gating functions,
the internal memory cell (ct) and the hidden layer output (ht) subse-
quently update themselves according to Eq. (5). Where xt is the input
vector at each time step; W W W W, , ,C f i o and b b b b, , ,C f i o represent the
weights and biases of the candidate neuron, the forget gate, the input
gate, and the output gate.

= +−c tanh W h x b~ ( ·[ , ] )t C t t C1 (3)

= +−f σ W h x b( ·[ , ] )t f t t f1

= +−i σ W h x b( ·[ , ] )t i t t i1

Table 1
Time-series characteristics of building-level load profiles.

Category Name Definition

Patterns Trend Long-term trending behaviors describing how the overall power consumption increases or decreases
Periodicity Periodical patterns of load profiles that mainly result from the seasonal energy usage preference and daily routine of occupants
Temporal dependence Correlation between the lagged load values and future load values
Uncertainty Randomness resided in load profiles due to non-routine behaviors of occupants

Covariance Weather covariance A part of load pertinent to space cooling/heating needs, which is sensitive to the outdoor temperature variance
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= +−σ W h x bo ( ·[ , ] )t o t t o1 (4)

= ∗ + ∗−c f c i c~t t t t t1

= ∗h o ctanh( )t t t (5)

Fig. 1 illustrates the architecture of the gated RNN model after being
unrolled along the time axis. Where m and n denote the lengths of
lagged values and prediction horizon; ⋯y , ,yn1 denote forecasted load
values at each time step. Note that weather prediction information is
appended at the end of the input series (highlighted in yellow circles in
Fig. 1), which differentiates this study from other existing work.

Unlike the seasonal ARIMAX model which only works as a one-hour
prediction model, one advantage of the DL-based models is their flex-
ibility on the lengths of input and output vectors. Parameters m and n in
Fig. 1 can be set to 24 and 1 to obtain the one-hour gated RNN model
(i.e., GRNN1). On the other hand, to obtain the 24-h gated RNN model
(i.e., GRNN24), both m and n can be set to 24.

2.4. Gated CNN model

CNN is made up of neurons that apply convolution computation to
the inputs hierarchically. It is invented for image processing. The first
time when CNN was used to solve sequential problems was in [37].
After introducing a novel gating mechanism, the developed gated CNN
model is able to outperform RNN for the language sequential modeling
task. Inspired by the autoregressive model and work done in [37],
authors in [33] designed a double-channel gated CNN model, called
Significance Offset CNN (SOCNN). This model is taken as the prototype
for designing the gated CNN model in this study. Following modifica-
tions have been made to fit the context of the day-ahead building-level
load forecasts:

1. Synchronous input series: The input variables are embedded in a
synchronous manner instead of asynchronous manner.

2. Concatenated weather prediction: Weather prediction information is
appended to the end of historical series (highlighted in yellow cir-
cles in Fig. 2). It is a × n2 matrix with the first row filled with all
zeros and the second row filled with predicted outdoor temperature
values.

Fig. 2 illustrates the structure of the gated CNN model designed for
day-ahead building-level load forecasts. The formats of input variables
(X ) and the output variable (y) are identical to that of the gated RNN
model. According to Fig. 2, each input variable is processed simulta-
neously using two different convolutional operations, either operated
together with the neighboring time stamps for detecting the temporal
dependency or operated alone for identifying the weather correlation at

each time stamp. What differentiates these two operations is the kernel
size of the filters: They are Conv1D filters with size ×2 k (marked by
blue triangles in Fig. 2) and Conv1D filters with size ×2 1 (marked by
blue thick arrows in Fig. 2). On top of the convolutional layers are the
linear gates following the gating function in Eq. (6), where ×OConv D k1 _2
and ×OConv D1 _2 1 represent outputs of the last Conv1D ×2 k layer and the
last Conv1D ×2 1 layer.

= ⊗× ×O σ O O( )G Conv D k Conv D1 _2 1 _2 1 (6)

Then the output from linear gates (OG) is mapped into the final
output series (y) through a fully connected neural network layer, see
Eq. (7). Where + ×W m n n( ) and b represent the weight and bias of the fully
connected layer.

= ++ ×y W O bm n n G( ) (7)

Note that a −k 1 length padding (marked by dashed rectangular
frames in Fig. 2) has been applied to the input sequences at each layer
in order to make sure that ×OConv D k1 _2 and ×OConv D1 _2 1 share the same
dimension.

The whole framework works as a data-dependent autoregressive
model, where the Conv1D ×2 1 filters provide the regressor at a single
time step, and the Conv1D ×2 k filters generate the coefficient for each
regressor. Unlike the fixed coefficient applied in the autoregressive
model, the output of Conv1D ×2 k filters varies as the input data
change. Therefore, the gated CNN model is much more capable of
capturing the non-linear temporal relationship exist in the data.

Similarly to the gated RNN model, the one-hour gated CNN model
(i.e., GCNN1) is obtained by setting =m 24 and =n 1; The 24-h gated
CNN model (i.e., GCNN24) is obtained by setting both m and =n 24.

3. Experiment setup

Performances of the above five models (i.e., SARIMAX, GRNN1,
GCNN1, GRNN24 and GCNN24) have been compared using case studies
of three commercial buildings. Variances on locations and consumption
levels of these buildings help substantiate the models’ generalizability.

3.1. Datasets

Datasets used in this study were collected in one-hour intervals for a
one-year period with 5% of missing data, consisting of five time series:
hourly electrical load (kW), outdoor temperature (°F), air pressure (in),
humidity (%) and wind speed (mph). Note that all buildings under
study are gas-heated. Since hourly natural gas consumption data are not
available, this paper focuses on predicting the electricity demand.

Building A, located in Alexandria, VA, is an academic building with
the area of around 30,000 square feet. Buildings B, located in Shirley,

Fig. 1. Gated RNN model for day-ahead building-level load forecasts.
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Fig. 2. Gated CNN model for day-ahead building-level load forecasts.

Fig. 3. Load profiles of three buildings in (a) April and (b) August.
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NY, is a primary/secondary school with the area of around 80,000
square feet. And, Building C, located in Uxbridge, MA, is a grocery store
with the area of around 55,000 square feet. Building A’s dataset was
collected through the BEMOSS project [38]. Buildings B and C’ datasets
are provided by the public EnerNOC Commercial building dataset [39].
Weather data were fetched from the weather underground website [40].
Due to different building load characteristics when HVAC is set to dif-
ferent modes (e.g., COOL or OFF), datasets of each building were di-
vided into: the COOL period (i.e., HVAC mode is set to COOL, May-
October) and the NON-COOL period (i.e., HVAC mode is set to OFF,
November-April). Peak electricity demands of buildings A, B and C are
approximately 40 kW, 180 kW and 450 kW during the NON-COOL
period, and 60 kW, 380 kW and 650 kW during the COOL period. Fig. 3
depicts load profiles of these three buildings in April (NON-COOL) and
August (COOL).

According to Fig. 3, daily load patterns of each building are rela-
tively constant in April (due to weak weather covariance), whereas vary
greatly in August (due to strong weather covariance). There is a trend of
decreased share of uncertainty when the building load-scale increases.
Despite the relatively constant daily load patterns exhibited by build-
ings B and C, there still exist some unpredictable irregular patterns.

3.2. Weather relevant feature selection

In order to select the most relevant weather indicators as the model
features, a feature selection work is conducted prior to model con-
struction. Here the weather variables accessible from weather under-
ground website are considered as candidate features. These are outdoor
temperature (xO), air pressure (x A), humidity (x H) and wind speed
(xW ). Pearson correlation coefficient is applied as the score function due
to its widely recognized ability of measuring the correlation between
two continuous variables. It can be computed based on Eq. (8), where
cov represents the covariance, σ xweather and σ x L are the standard devia-
tions of any weather variable (xweather) and building load series (x L)
respectively. Table 2 summarizes the Pearson correlation coefficient
statistics between each weather variables and building load for build-
ings A–C. According to Table 2, a strong positive correlation is found
between outdoor temperature and building load across all buildings,
whereas the correlation between the other weather variables (i.e., air
pressure, humidity and wind speed) and building load are either zero or
insignificant (with absolute values of less than 0.3). Adding these
weakly correlated variables into the feature set will tend to overfit the
model. Therefore, in this study, only outdoor temperature (xO) is se-
lected as the weather relevant feature.

= ∈ρ cov x x
σ σ

x x x x x( , ) , { , , , }x x

weather L

x x

weather O A H W
,weather L

weather L (8)

3.3. Data preprocessing

The following data-preprocessing procedures have been im-
plemented:

Data Cleaning: In order to eliminate the influence of missing data,
list-wise deletion was conducted. Raw datasets were then divided into
multiple sections bounded by the missing points so as to maintain the
continuity of time. Then, weekend data were removed, since the irre-
gular load pattern during weekends has proven to have significant in-
fluence on the prediction accuracy on weekdays.

Data Segmentation: After filtering out the missing data and
weekend profiles, cleaned datasets for each building were then seg-
mented into: training dataset (90%), validation dataset (5%) and testing
dataset (5%).

Time-series to supervised learning dataset: All training, valida-
tion and testing datasets were converted into the supervised learning
format, where time-series sequences became input-output pairs through

the process of sliding windows.
Normalization: Finally, to stabilize the learning process, input

variables in each training dataset, together with corresponding vali-
dation and testing datasets, were carefully normalized. Normalization
helps prevent dramatic changes on the gradient, so as to smoothen the
convergence.

3.4. Model validation

After all datasets were properly preprocessed, model parameters
(i.e., weights and bias in DL-based models) and hyper-parameters (i.e.,
layers and number of neurons in DL-based models) were tuned using
training and validation datasets. Once the optimal model parameters
(different for different buildings) and hyper-parameters (same for each
building) were obtained, testing datasets of each building were fed into
the optimized models for comparing the performance. The Train-
Validation-Test split was applied here to verify the capability of each
model to be generalized to unseen data.

3.5. Algorithm implementation

All experiments were carried out in the Python compiling environ-
ment using an Intel Core i7-4770 CPU machine. Implementation of the
SARIMAX model relied on the Python package: StatsModels. All DL-
based models were developed using the TensorFlow [41].

Optimized hyper-parameters used in each model are summarized in
Table 3. Where L, NN , r , bs, and ks represent the layer structure,
number of neurons in each layer, learning rate, batch size, and kernel
size (only available in CNN models), respectively. Adam optimizer was
applied to all of the DL-based models.

4. Performance comparison

High prediction accuracy, high computational efficiency, robustness
against weather forecast error and generalizability are considered as the
most important qualities of a day-ahead load forecasting model. In this
study, all above properties have been compared.

4.1. Accuracy of one-hour prediction models

Accuracy of the one-hour prediction models is presented in Tables 4
and 5, summarizing mean absolute percentage error (MAPE) and
coefficient of variance (CV) of the single-step predictions. MAPE and CV
were calculated using Eqs. (9) and (10), where Prei and Acti represent
the predicted and actual loads. N is the number of observations in the
testing dataset. Act¯ is the mean of actual values.

=
∑

×
=

−

N
MAPE 100

i
N Pre Act

Act1
i i

i

(9)

= ×

∑ −

−
=

Act
CV ¯ 100

Pre Act
N

( )
1

i
N

i i1
2

(10)

The best performance among all three models is observed in
Building C — the building with the largest peak load (450 kW/650 kW

Table 2
Pearson correlation coefficients between different weather relevant variables
and building load.

Building A
(40–60 kWp)

Building B
(180–380 kWp)

Building C
(450–650 kWp)

Outdoor Temperature 0.74 0.51 0.76
Air Pressure 0 0 0
Humidity −0.26 −0.07 −0.10
Wind speed −0.02 −0.04 0.02
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during NON-COOL/COOL period). This building has MAPE values of
less than 2.5% and 4.0% for one-hour DL-based models and the
SARIMAX model. As the building load-scale become smaller, perfor-
mances of all three models keep going down (see results for Buildings A
and B). It is as expected because larger buildings usually have more
occupants. As there are more people in a building, it is more likely that
the uncertainty of their aggregated behavior will be averaged, leading
to a more regular and predictable building load pattern.

For all three buildings being tested, the SARIMAX model performs
significantly poorer than the DL-based models, and its model perfor-
mance deteriorates significantly as the building peak load goes down.
The performance of one-hour DL-based models is not heavily degraded
compared to that of the SARIMAX for smaller buildings, as MAPE values
remain at around 9% (compared to 17% of the SARIMAX) when dealing
with the building with peak load of less than 60 kW. This indicates a
much better generalizability of the one-hour DL-based models as
compared to the SARIMAX model. Within the DL scope, it is also found
that the GCNN1 model performs slightly better than the GRNN1 model
and contributes the best performance for all cases. It brings down the
MAPE errors of the SARIMAX model by 37.0% and 37.5% for NON-
COOL and COOL cases on average.

4.2. Accuracy of 24-h prediction models

Accuracy of the 24-h prediction models are analyzed in Fig. 4,
where the boxplots of RMSE tested on buildings A, B and C are shown in
subplots Fig. 4(a)–(c). Since the SARIMAX model can only be for-
mulated as the one-hour model, it is not considered in this subsection.
Only two 24-h prediction models (i.e., GRNN24 and GCNN24) are

compared. Output of the 24-h model is a vector instead of a scalar as in
the case of the one-hour model. Therefore, RMSE shown in Eq. (11) is
applied to evaluate their prediction accuracy. Where n= 24 represents
length of the output vector.

=
∑ −

=
Pre Act

n
RMSE

( )
i

j
n

j j1
2

(11)

According to Fig. 4, the accuracy of the GRNN24 model is un-
satisfactory, as the mean RMSE values of the GRNN24 model for all
COOL cases are 6.6 kW, 25.0 kW and 44.0 kW of buildings A, B and C,
all being above 6.6% of the building peaks. With lower RMSE means
and variances, the GCNN24 performs much better compared to the
GRNN24. Averaged RMSE values of the GCNN24 model are 4.0 kW,
13.4 kW and 15.2 kW for buildings A, B and C, which are around 6.7%,
3.5% and 2.3% of the building peaks, respectively.

4.3. Performance comparison of day-ahead building-level load forecasts

In this subsection, all developed one-hour/24-h prediction models
are compared when performing the day-ahead building-level load
forecasts. Fig. 5 plots the forecasting results of different models (in-
cluding SARIMAX, GRNN1, GCNN1, GRNN24 and GCNN24) using one
NON-COOL week and one COOL week of buildings A, B and C (only for
weekdays). Averaged RMSE values for all five testing weekdays are
summarized in Table 6. For each case, the experiment was conducted to
perform day-ahead forecasts at midnight for five consecutive weekdays.

According to Fig. 5, despite the poorer one-hour prediction accuracy
of the SARMIAX model compared to that of the one-hour DL-based
models, it generates better multi-step forecasting results for all NON-
COOL cases than the one-hour DL-based models. However, GCNN24
outperforms it for NON-COOL cases of Buildings A and B. Also, its
performance on COOL cases expose its sensitivity to both outdoor
temperature covariance and load uncertainty. For outdoor temperature
covariance, it is observed that when there is a strong weather

Table 3
Model configuration.

non-DL model
Model p d q P D Q S
SARIMAX 24 1 0 0 1 0 24

DL models
Model L NN r bs ks
GRNN _1 2 3 0.005 50 –
GCNN _1 3 conv+3

conv
8,5,1+8,5,1 0.005 50 6,3,3+ 1,1,1

GRNN _24 3 32 0.005 50 –
GRNN_24 3 conv+3

conv
10,8,1+ 10,8,1 0.005 50 6,3,3+ 1,1,1

Table 4
MAPE (%) of one-hour prediction models under different testing cases.

Building A (40–60
kWp)

Building B (180–380
kWp)

Building C (450–650
kWp)

NON-
COOL

COOL NON-
COOL

COOL NON-
COOL

COOL

SARIMAX 13.54 16.13 10.57 8.04 2.95 3.85
GRNN1 8.67 8.99 7.91 5.95 2.36 2.41
GCNN1 8.02 8.53 5.73 5.85 2.23 2.38

Table 5
CV (%) of one-hour prediction models under different testing cases.

Building A (40–60
kWp)

Building B (180–380
kWp)

Building C (450–650
kWp)

NON-
COOL

COOL NON-
COOL

COOL NON-
COOL

COOL

SARIMAX 18.71 22.12 13.40 11.14 3.39 5.28
GRNN1 12.20 12.01 8.63 8.10 2.99 3.15
GCNN1 10.97 10.86 6.85 7.68 2.66 3.03

Fig. 4. Comparison of the RMSE boxplots of 24-h DL-based models across all
scenarios: (a) Building A-40/60kWp; (b) Building B-180/380kWp; (c) Building
C-450/650kWp.
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Fig. 5. Comparing day-ahead load forecasting results of different models (SARIMAX, GRNN1, GCNN1, GRNN24 and GCNN24). (a) Building A NON-COOL week; (b)
Building A COOL week; (c) Building B NON-COOL week; (d) Building B COOL week; (e) Building C NON-COOL week; (f) Building C COOL week.
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covariance (COOL period), the day-ahead load forecasts generated by
the SARIMAX model heavily deviates from the actual values. Such in-
fluence, on the other hand, can be successfully handled by the DL-based

models. For load uncertainty, the performance gap between the SAR-
IMAX model and DL-based models for both NON-COOL and COOL cases
are found to be the largest for Building A, which has the lowest peak
load and highest share of uncertainty. This is intuitively under-
standable, as the SARIMAX model is built on an assumption of linearity,
whereas the real temporal relationship and covariance are mostly non-
linear. Also, the substantial amount of uncertainty contained in the
time-series building load data may heavily degrade the performance of
SARIMAX, since regression-based methods assume that both input and
output variables follow the Gaussian distribution.

As for the DL models, despite the better one-hour prediction accu-
racy of the GCNN1 model compared to that of the GRNN1 model, in-
dicated in Section 4.1, the GCNN1 model not necessarily wins the day-
ahead load forecasting tasks. Their performances are comparative and it
is hard to say which one outperforms the other. As for the 24-h models,
the superior performance of the GCNN24 model over the GRNN24
model is observed as already proved in Section 4.2. When comparing
across all one-hour and 24-h models, despite the high one-hour pre-
diction accuracy of the one-hour models, their multi-step forecasting
results are proven to be slightly worse than that of the GCNN24. This is
due to the accumulated errors through recursive operations.

Overall, the GCNN24 model demonstrates the most promising
ability of handling the day-ahead building-level load forecasts. The
predicted curves provided by it closely follow the load shapes of dif-
ferent weekdays and capture the peak load change against various
weather conditions. According to Table 6, GCNN24 outperforms other
models for 4 out of 6 cases. It is found that for the GCNN24 model, the
RMSE values for the testing cases with peak load of 380 kW or above
are approximately 4.2% or less of the building peak. However, when
the peak load decreases to 180 kW or less, the RMSE values are in-
creased to be above 5.7% of the building peak.

In order to analyze how the GCNN24 model provides improvement
in day-ahead load forecasting as compared to the other models, an
hour-of-day indexed error analysis across SARIMAX, GCNN1 and
GCNN24 is conducted, taking Building A, COOL case as an example.
Averaged MAPE values at each hour of the day of different models are
plotted in Fig. 6. As illustrated in Fig. 6, although the hourly prediction
errors of the three models are similar in the first hour, these values
evolve quite differently across the day. A significant increase in error
happens starting from hour 10 when the SARIMAX model is applied.
This is mainly due its low single-step prediction accuracy as well as the
error accumulation during the recursive operations. By replacing the
SARIMAX model with the GCNN1 model, single-step prediction accu-
racy has been largely improved. However, error accumulation problem
still exists as an abrupt error peak is observed during hours 6–8. Finally,
by converting the one-hour CNN model into the 24-h model, the model
performance is further improved as the histogram of GCNN24 appears
to be the most flattened across the day. Instead of fitting the model hour
by hour, GCNN24 is able to learn the daily load shape as a whole so as
to avoid abrupt deviation from the regular daily load pattern in its
prediction. It largely prevents the negative impact of the error accu-
mulation and contributes to a better multi-step performance.

4.4. Computational efficiency

Table 7 summarizes the computation time of each model in seconds,

Table 6
Comparison of the averaged RMSE (kW) fortesting datasets.

Building &Case SARIMAX GRNN1 GCNN1 GRNN24 GCNN24

A NON-COOL 5.2 5.5 5.2 9.0 5.1
COOL 5.7 4.7 3.8 5.9 3.4

B NON-COOL 14.3 15.3 15.6 15.8 12.6
COOL 17.5 17.1 14.3 23.1 15.9

C NON-COOL 11.4 12.8 13.0 21.4 12.5
COOL 21.2 17.9 19.0 45.0 17.3

*Best performances of each case are highlighted in bold.

Fig. 6. Hour-of-day indexed error analysis for SARIMAX, GCNN1 and GCNN24.

Table 7
Computation Time for Each Model (in Seconds).

One-hour models 24-h models

SARIMAX 87
GRNN1 (850 epochs) 123 GRNN24 (1000 epochs) 139
GCNN1 (400 epochs) 92 GCNN24 (240 epochs) 80

Fig. 7. Learning curves comparison between GRNN and GCNN models: (a)
Learning curves of one-hour prediction models (GRNN1, GCNN1); (b) Learning
curves of 24-h prediction models (GRNN24, GCNN24).

Table 8
Averaged RMSE (kW) for five testing days under different noise levels.

Percentage of introduced noise GCNN24 GRNN1 GCNN1

0% 17.26 17.88 18.99
20% 17.62 18.21 19.53
40% 17.55 18.38 19.23
60% 17.84 18.52 19.47
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based on the experiments conducted using the COOL dataset of Building
C. Epoch numbers of each DL-based model were determined based on
the convergence time shown on the learning curves (Fig. 7). According
to Table 7, the GCNN24 model demonstrates the best computational
efficiency. Although the SARIMAX shows higher computation efficiency
compared to most DL-based models, it is less efficient than the GCNN24
model. Compared to the GRNN models, GCNN models have speeded up
the computation by 25–42%.

Fig. 7(a) and (b) specifically compare the learning curves among
different DL-based models, using the COOL dataset of building C.

Based on Fig. 7, the following observations are made:

1. With regard to one-hour prediction models, it takes the GCNN1
model less than 400 epochs to converge, while around 850 epochs
are required for the GRNN1 model. However, the validation error
curve of GRNN1 goes down more smoothly as compared to that of
GCNN1.

2. With regard to 24-h prediction models, the GCNN24 model con-
verges at around 240 epochs, but it takes the GRNN24 around 1000
epochs to converge. Also, the validation error curve of GRNN24 goes
down more smoothly as compared to that of GCNN24.

Overall, GCNN24 outperforms all other models, including its tra-
ditional time-series counterpart SARIMAX, in terms of the computa-
tional efficiency. Such an advantage attributes to its capability of par-
alleling the computation. Unlike the chain-like structure that the GRNN
models apply for processing the time-series data, the GCNN models are
able to parallel the sequence and process each section synchronously.

4.5. Robustness analysis

So far it has been proven that the GCNN24 and one-hour DL-based
models own the top performances among the investigated models for
day-ahead building-level load forecasts. However, the predicted
weather profiles used in the testing datasets are assumed to be 100%
accurate. An additional concern is raised as the accuracy of next-day
weather prediction may not always be guaranteed. In order to examine
the robustness of GCNN24, GRNN1 and GCNN1 for handling the day-
ahead building-level load forecasts in presence of weather prediction
error, a further robustness analysis was conducted.

Three sets of manipulated testing datasets were generated by in-
troducing three different levels of noises into the day-ahead weather
data. To be specific, for the five-day hourly weather profile
(5 * 24= 120 data points), 20%, 40% and 60% of the original data
points were added with a Gaussian distributed white noise. The
GCNN24, GRNN1 and GCNN1 models were re-run on the COOL dataset
of Building C using three noise-introduced weather profiles. Table 8
presents the averaged RMSE values for five testing days of GCNN24,
GRNN1 and GCNN1 models under different noise levels.

It is shown that with the introduction of up to 60% weather pre-
diction white noise, the averaged RMSE of the GCNN24, GRNN1 and
GCNN1 models slightly increase from 17.26 kW to 17.84 kW (by
3.36%), from 17.88 kW to 18.52 kW (by 3.58%) and from 18.99 kW to
19.47 kW (by 2.53%). Therefore, it is verified that all three models:
GCNN24, GRNN1 and GCNN1 models are robust against the error in the
next-day weather forecasts.

5. Conclusion

In this study, the performances of three different time-series ap-
proaches (i.e., SARIMAX, GRNN and GCNN) in the application of day-
ahead building-level load forecasts are systematically compared. The
value of deep learning techniques in such an application is compre-
hensively verified.

Two popular deep learning networks, RNN and CNN, have been
utilized and constructed into the day-ahead building-level load

forecasting framework. Their performance under both recursive multi-
step and direct multi-step forecasting manners are analysed.
Experimental results indicate that most of the proposed deep learning-
based models (except GRNN24) achieve promising results as compared
to its traditional counterpart SARIMAX. From the aspect of prediction
accuracy, the day-ahead multi-step forecasting errors of the proposed
GCNN24 model decrease by 22.6% on average for cases with strong
weather covariance, compared to those of the SARIMAX model. Such
decrement reaches 40% when the building load patterns are highly
uncertain (i.e., for buildings with smaller peak electrical load). From
the perspective of computational efficiency, when the GCNN24 model is
applied, the operation time is speeded up by 8% compared to that of the
SARIMAX model. From the aspect of generalizability, it is proven that
the impact of building load uncertainty on the performances of GRNN1,
GCNN1 and GCNN24 is less than that of the SARIMAX model.

Within the deep learning scope, the GCNN24 model outperforms all
other deep learning-based models investigated in this study. It offers
better accuracy compared to the GCNN1 model, and significant super-
iority to the GRNN models in both accuracy and computational effi-
ciency. From the practical point of view, the multi-thread design of
modern hardware well supports the models with parallelized structure.
Therefore, it is expected that the GCNN24 model can play a dominant
role in future day-ahead building-level load forecasting work, especially
when dealing with load forecasts of a large number of buildings.

To sum up, the emergence of deep learning techniques provides us
the opportunity to bring the performance of day-ahead building-level
load forecasts to an even higher level. Compared to the conventional
approaches, a well-design hierarchically-structured deep learning net-
work may be more capable of capturing the data-dependent uncertainty
and may even increase the computational efficiency for large-scale
application. The GCNN24 model proposed in this study demonstrates
competitive capabilities. It can be applied as a good start for the deep
learning-based network investigation of day-ahead building-level load
forecasts. For future work, building-level heating demand prediction
using the proposed deep learning techniques can be validated when gas
consumption data are available. Also, extended models involving the
prediction of power consumption of individual load by type can be
investigated.
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