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(GHI) forecasts. However, variability and uncertainty are inherent characteristics of solar radiation.
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research presents a new intelligence framework by hybridizing Support Vector Regression (SVR) with
the Grasshopper Optimization Algorithm (GOA) and the Boruta-based feature selection algorithm
(BA) for forecasting GHI values at different sites of Saudi Arabia. Interestingly, the most significant
distinction that differentiates this proposed prediction model (SVR-GOA-BAK) from other models is
that the GOA is automatically employed to search for optimal SVR’s hyperparameters. In contrast,
these hyperparameters are chosen randomly and manually in conventional models. Consequently,
the contribution helps save time, reduce cost, and avoid the possibility of models’ overfitting or
underfitting caused by random and manual selection. A diversity of statistical measures has justified
the proposed model’s effectiveness and superiority. In terms of mean absolute percentage error
(MAPE), the proposed model outperformed the standalone SVR models by 32.15–39.69% at different
study sites. In tuning the SVR’s parameters, GOA outperforms popular optimization algorithms. All
the simulation test results demonstrate the superiority of the proposed model. Hence, the proposed
approach provides a foundation for precise solar radiation forecasting, which can aid in the growth of
renewable-energy-based technologies.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The increasing quest for alternative energy sources away from
ossil fuels results from four trends associated with fossils: (a)
heir depletion; (b) limited resources, which lead to rising prices;
c) the environmental dilemma triggered by greenhouse gases;
nd (d) the emergence of renewable, ecological, sustainable, or
atural consumer culture [1]. Electricity suppliers can adopt the
otion of sustainable supplies by the employment of green re-
ewables, particularly solar energy, which is nevertheless dis-
inguished by a high degree of uncertainty in availability and
roduction. However, sudden variations in solar electricity out-
ut are among the terrible impacts of momentary changes in
limatic circumstances. Indeed, renewables’ stochastic and inter-
ittent existence could impede their efficient usage by power
uppliers [2]. It could also stifle the growth of renewable energy
echnologies like photovoltaics, wind turbines, and concentrating
olar power plants in the future [3]. Also, using solar-based elec-
ricity in a power grid remains troublesome at elevated scales for
arious nuanced but now well-established reasons [4]. The supply
oes not match the demand. Changes to power grid operations
re expected to manage solar power variability and unpredictabil-
ty, increasing demand for ancillary services and energy balancing
n general [5]. Therefore, the costly expenditures associated with
uch adjustments and requirements earnestly impact renewables’
conomic viability.
Multiple feasible options can help mitigate technical and prac-

ical problems triggered by the short-term uncertainty, until
even days ahead, in the solar power supply. For example, raising
he level of demand-side engagement, raising the volume of
ollaboration to manage allocations, introducing smart grids, and
nstalling more adaptable – and often more expensive – energy
torage technologies [6]. However, precise solar irradiance fore-
asting is among the most functional and cost-effective strategies
or penetrating higher solar power levels and making optimal
ecisions on the planning of renewable energy projects [7]. Bal-
ncing agencies should use such predictions to run power grids
ore reliably and effectively. Forecasts for the future, on the
ther hand, need more complex models. Due to the non-linearity
nd difficulty of modeling the solar radiation series, this is consid-
red a difficult challenge [8]. Hence, solar radiation prediction has
een a hot subject in energy research, and several new methods
ave been proposed to strengthen the solar radiation predictive
odeling literature.
Information on global solar radiation (GHI) at any location is

ssential for various requirements, including climatology, hydrol-
gy, public health, and clean energy utilization [9]. The latter ap-
lication is what matters in this research. By focusing on forecast
 s

2

time horizons, solar forecasting reduces the impact of variability
and uncertainty associated with solar energy. About practical ap-
plication, Fig. 1 depicts various prediction scales and related func-
tions in solar-based power systems. For real-time battery stor-
age management, very short-term prediction is deemed neces-
sary [10]. Short-term prediction is vital for decision-making tasks
such as unit commitment problems [11]. Medium-term forecast-
ing is valuable for maintenance schedules and power units run-
ning [12]. Long-term prediction is essential for strategic power
grid operations planning [13]. Diverse predictive methodologies
for GHI forecasting have been established and are discussed in
Section 1.1.

1.1. Literature review

Data-based techniques have become typical in solar radiation
prediction in recent years with the advancements of data-mining
methods. Specifically, different data-mining methods are used
to forecast the time series of solar radiation. Machine-learning
models have recently received a lot of attention due to their
high accuracy. Various machine learning (ML) models, such as
the artificial neural network (ANN), regression decision tree (DT),
genetic programming (GA), SVR, data mining, and fuzzy logic,
have been developed for GHI forecasting [14]. Besides, Alfadda
et al. have proposed an hour-ahead solar irradiance prediction
model concerning desert areas [15]. This model used aerosol op-
tical depth and angstrom exponent ground-based data to capture
the dust impact in such areas. The proposed model was tested and
validated using four ML algorithms: multilayer perceptron (MLP),
SVR, KNN, and DT. The research study concludes that the dust
measures significantly enhanced the model’s accuracy, where the
MLP model has the best predictive capacity. Deep learning, a
subfield of machine learning, has been booming lately because
of rapid advancements of information technology in hardware
and software. For example, the hybrid methods of convolutional
neural network (CNN) and long short-term memory (LSTM) al-
gorithms (C-LSTM) were developed by Ghimire et al. [16]. The
models were trained and validated using 30-minute and hourly
datasets from 2006 to 2018 in Alice Springs, Austria. Compared
to CNN, LSTM, MLP, deep neural nets (DNN), and DT, the C-LSTM
hybrid methods performed the highest, with predictive errors
at 70% and under ± 10 W/m2. Utilizing data series from 2017
o 2019, Huynh et al. employed the deep learning of LSTM for
orecasting GHI from one minute to 30 min ahead in Bac Ninh
rovince, Vietnam [17]. When LSTM was compared to the auto-
egressive integrated moving average (ARIMA), SVM, MLP, and
NN, it was found that LSTM had the maximum efficiency, with
-value greater than 0.9. Aslam et al. came to a similar conclu-

ion [18]. Besides the algorithms mentioned above, researchers
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Abbreviations

GHI Global horizontal irradiance
BA Boruta algorithm
SVR Support vector regression
GOA Grasshopper optimization algorithm
ML Machine learning
KNN K-nearest-neighbors
ANN Artificial neural networks
RF Random forest
MLP Multilayer perceptron
DT Decision tree regression
BPNN Backpropagation neural network
DHI Diffuse solar radiation
PSO Particle swarm optimization
GA Genetic algorithm
ANFIS Adaptive neural fuzzy inference system
GMDH Group method of data handling
CNN Convolutional neural network
LSTM Long short-term memory
DNN Deep neural nets
ARIMA Auto-regressive integrated moving av-

erage
ELM Extreme learning machine
C Regularization parameter
γ Width of the radial basis kernel func-

tion
FSP Feature selection process
GGA Grouping genetic algorithm
CRO Coral reefs optimization algorithm
SVR-GOA-BAK The proposed model in this paper
K The number of input features in build-

ing the proposed model
K.A.CARE King Abdullah City for Atomic and

Renewable Energy
RBF Radial basis function
AA Azimuth angle
SZA Solar zenith angle
PrevHourDNI Direct normal irradiance at the previous

hour
PrevHourDHI Diffuse horizontal irradiance at the

previous hour
PrevHourGHI Global horizontal irradiance at the pre-

vious hour
RMSE Root mean square error
nRMSE Normalized root mean square error
R2 Goodness of fit
MAPE Mean absolute percentage error
MAE Mean absolute error
nMAE Normalized mean absolute error

suggested a slew of others. Autoregressive (AR) [19], ARIMA [20],
multivariate adaptive regression splines (MARS) [21], and the
logistic model [22] are some of them. In general, these methods
outperformed empirical alternatives in terms of precision. Com-
pared to MLP, kernels-based algorithms, tree-based algorithms,
they had less computational complexity. However, they are often
coupled with other models to improve their efficiency.

Only a few properties of the solar radiation time series, nev-
rtheless, can be identified by single data-mining methods. Thus,
3

hybrid models, which use multi-data mining algorithms, have
been embraced by researchers to boost short-term solar fore-
casting efficiency. At a station in Kuala Terengganu, Malaysia,
Halabi et al. developed conventional and hybrid ANFIS models by
combining ANFIS with particle swarm optimization (PSO), GA,
and differential evolution algorithm (DE) to forecast monthly
GHI [23]. The study used various climatic variables such as maxi-
mum and minimum air temperature, rainfall, clearness index, and
sunshine duration. The findings concluded that the hybrid ANFIS-
PSO model outperforms the other models in forecasting GHI. Also,
Dong et al. primarily have constructed a new predictive approach
based on the deep-learning CNN algorithm and afterward applied
a chaotic hybrid (GA-PSO) method to optimize CNN’s network’s
parameters [24]. The study reveals how critical the chaotic hybrid
algorithm is in mitigating the approach’s imperfect efficiency. On
the other hand, integrating ML algorithms with suitable decom-
position methods impacts the GHI value forecasting precision.
Generally, wavelet transfer (WT), empirical model decomposition
(EMD), and ensemble empirical model decomposition (EEMD) are
the three most commonly used decomposition methods in the
GHI prediction scope. For 1-hour ahead GHI prediction, Monjoly
et al. compared the three standard algorithms [25]. A traditional
ANN and a hybrid model were used to test the three decom-
position models’ applicability. The research revealed that, after
the decomposition, the predictive performance was considerably
enhanced, particularly for WT. The analysis used datasets col-
lected between 2012 to 2013 in Guadeloupe Island, France. The
ANN model had an RMSE of 25.86%, while the combined method
with EMD, EEMD, and WT had a decreasing RMSE of 16.91%,
14.06%, and 7.86%, respectively.

However, in solving complex nonlinear engineering problems,
SVR, a kernel-based algorithm, has been proven to have higher
predictive accuracy and faster speed in dealing with such is-
sues [26]. It is considered reliable and robust, where a compact
description of the learned model can be provided, which is an-
other advantage needed by some researchers. Several researchers
have discovered that SVR is more effective at forecasting GHI
than other methods [27]. Using data from various locations, ref-
erences [28–31] constructed SVR-based models to forecast GHI
and inferred that the SVM performed satisfactorily for GHI predic-
tion. Hassan et al. evaluated the group method of data handling
(GBDT), random forest (RF), ANN, DT, and SVR algorithms find-
ing that the SVR had the best accuracy [32]. Moreover, Quej
et al. have developed predictive models utilizing various soft-
computing methods to forecast solar radiation in a warm sub-
humid climate [33]. The study has better predictive performance
from SVR than ANFIS and ANN models. The SVR model achieves
an R-value of 0.8209 while ANFIS and ANN score 0.8024 and
0.8012, respectively. Interestingly, for three different locations in
Nigeria, Olatomiwa et al. have proposed a hybrid approach of
the SVM, whose hyperparameters were optimized by the firefly
optimization algorithm to predict the monthly average GHI [34].
In this study, the hybrid model’s predictive effectiveness was
compared to ANN and GA models. The comparison findings con-
clude that the designed model is more successful in predicting
GHI values, achieving MAPE of 11.52%. Due to its capacity to grasp
the uncertainty linked to time series data, SVR was the most
accurate for GHI prediction in a comparative study of different
Ml algorithms in GHI forecasting [32]. However, the tuning of
the SVR’s hyperparameters is the model’s major flaw [26]. The
first parameter is a nonzero constant known as the regulariza-
tion parameter (C). The C is the tuning parameter between two
objectives: models’ complexity and the model’s needed predictive
efficacy during the forecasting models’ training phase. Also, the
parameter of the kernel function (γ ) is the second parameter.

Thus, the suitable selection of these two hyperparameters is
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Fig. 1. Prediction scales and used applications.
ritically essential for SVR to perform well. As a result, in previous
tudies, the conventional SVR model was combined with various
ptimization algorithms to enhance its efficiency. Even though
he current hybrid SVR model’s accuracy is good, the forecasting
fficiency still needs to be improved, given the significance of
HI measurement accuracy. Hence, the employment of recent
nd powerful optimization techniques, especially metaheuristic
ptimization algorithms, is a crucial key in developing highly
ccurate SVR-based predictive models [35].
In ML-based applications, the feature selection process (FSP)

s a crucial task as irrelevant features, used in training phases
f several predictive systems, can negatively influence systems’
ost, computational runtime, and overfitting problems [36]. Also,
rrelevant features make predictive models’ efficiency in gener-
lization much lower [37]. Several different algorithms can be
pplied to address the FSP. Generally, such algorithms can be split
nto two distinct classes: wrapper and filter techniques [38]. Sal-
edo et al. have concluded that wrapper techniques are primarily
sed in renewable energy applications, compared to filter coun-
erparts [39]. The methods of Relief-F, Monte Carlo uninformative
ariable elimination, random frog, and LSA were compared by Al-
araashi [40]. In this study, the MLP-based models were trained
nd tested with multiple variables from eight regions in Saudi
rabia for daily GHI forecasting. He discovered that the Relief-F’s
ombinations of features achieved the best precision. However,
SA needed lower computation time and was advised for the opti-
al techniques. For example, Aybar et al. used a grouping genetic
lgorithm (GGA) to choose the optimal features set that maximize
n extreme learning machine’s (ELM) efficiency in predicting GHI
n Toledo, Spain [41]. Compared to the standalone ELM, findings
how that, in terms of RMSE, the FSP can boost the prediction
fficiency by 10%. In Spain, Salcedo et al. also built a wrapper FSP
ethod based on a coral reefs optimization algorithm to attain a
maller number of relevant predictive variables, combined with
LM models (CRO-ELM), solving the feature selection process to
redict GHI [42]. When compared to the GGA-ELM models, the
RO-ELM was found to be more accurate. Thus, identifying the
ptimal combination of input variables for the forecasting model
s an independent, significant process.

.2. Contribution statement

According to the presented literature, this study contributes
o the present predictive analytics literature concerning global
orizontal irradiance (GHI) forecasting by developing a neoteric
ybrid forecasting strategy. In this strategy, the Grasshopper opti-
ization algorithm (GOA) and the Boruta-based feature selection
lgorithm (BA) are incorporated along with the SVR learning algo-
ithm to constitute the proposed predictive approach. The main
ontributions and innovations of this study can be summarized
s follows:
4

1. The SVR is applied to explore the underlying patterns in
complex data series and predict GHI’s future values. Real-
world data train the model. In general, the merits of the
SVR algorithm are thoroughly discussed in Section 3.1.

2. Indeed, the SVR’s predictive performance is strongly de-
pendent on the suitable and precise selection of its hy-
perparameters, namely, C and γ . In this context, this pa-
per hybridizes the SVR method with a novel optimization
technique (GOA) to improve its efficiency, accuracy, and
calculation speed. Therefore, the SVR’s optimal hyperpa-
rameters can be automatically acquired, and this saves the
manual parameters setting burden and facilitates the entire
prediction process.

3. A new optimization algorithm (GOA) is introduced to op-
timize the SVR’s hyperparameters in the forecasting ap-
proach. GOA is used in this study because of its simplicity,
gradient-free structure, high local optima avoidance, and
interpretation of problems as black boxes. Thus, we in-
vestigate the usage of this algorithm to solve real-world
problems, as it is suggested by [43]. Further discussion
about the merits of GOA compared to other optimization
techniques can be found in Section 3.2.

4. A new feature selection technique based on BA is used to
determine the optimal candidate inputs. The optimal can-
didates will be transferred to the forecast engine because
of this filtering, which improves the forecasting approach’s
accuracy and speed, ensuring its effectiveness for real-time
implementations.

5. Although this study aims to predict hourly GHI for three
sites in Saudi Arabia, the findings can be used to help
choose the optimal model of ML algorithms for estimating
solar radiation in different geographical locations.

Finally, hybridization of the BA and GOA with the SVR for
predicting short-term GHI has contributed to superior predic-
tive performance in our novel hybrid model, which, in turn,
contributes to the learning paradigm for solar energy modeling.
Performance evaluations of the developed predictive model (SVR-
GOA-BAK) are conducted to validate the predictive accuracy by
forecasting the hour-ahead GHI in three Saudi Arabian cities
(Dhahran, Riyadh, and Jeddah). The proposed approach’s efficacy
and superiority are verified by benchmark tests and justified
by conducting predictive comparisons with distinct predictive
algorithms and optimizers.

1.3. Organization of the paper

After summarizing recent allied literature, defining gaps, and
stating objectives for the current work in Section 1, the paper’s re-
mainder is organized in the following way: A detailed description
of study sites, datasets, and data pre-processing and normaliza-
tion is outlined in Section 2. Research methodology, including
the operations of SVR, GOA, BA, the proposed model SVR-GOA-
BA , and benchmark ML algorithms for comparison purposes, are
K
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he geographical coordinates and summary statistics of the sites.
Station information Sites in Saudi Arabia

Dhahran Riyadh Jeddah

Latitude (◦N) 26.30 24.71 21.49
Longitude (◦E) 50.14 46.68 39.24
Elevation (m) 75 668 75
Solar station KFUPM K.A.CARE KAU
Average GHI (kWh/m2/day) 5.6 6.29 5.82
Maximum GHI (kWh/m2/day) 8.45 8.74 8.18
Minimum GHI (kWh/m2/day) 0.55 0.7 1.31
Average temperature (◦C) 27.83 25.96 30.85
Maximum temperature (◦C) 40.5 39.5 39
Minimum temperature (◦C) 8.1 5 20.1

enunciated in Section 3. The results of this research study are
reported and together discussed in Section 4. Finally, remarks and
future work recommendations are concluded in Section 5.

2. Description of the database

In this section, information about the sites considered in this
esearch across Saudi Arabia is first given. Afterward, a complete
escription of the datasets utilized in developing and validat-
ng the built models is presented. Finally, dataset normalization,
re-processing, and preparation phases are also discussed below.

.1. Study sites

Fossil fuel resources are responsible for supplying electric
nergy in most countries, so these resources diminish steadily
nnually [44]. Hence, substituting such resources with alternative
nergy resources, especially solar energy, has been considered.
egardless of the enormous hydrocarbon reserves in Saudi Arabia,
his nation is potentially one of the best solar energy regions. For
hotovoltaic generation plants, the prediction of solar radiation is
ital in boosting solar energy for electrical production schemes.
his paper aims at forecasting the future hourly GHI (at the one-
our-ahead time horizon) for three different sites in Saudi Arabia:
hahran (located along the eastern coast), Riyadh (situated in
he middle), and Jeddah (situated along the western coast) cities.
ig. 2 displays the sites considered in this study. Table 1 summa-
izes exact location information and some statistical descriptions
f the assessed areas.
The datasets utilized in this research were recorded at the

ing Fahd University of Petroleum & Minerals Solar Monitoring
tation (KFUPM) for Dhahran City, K.A.CARE Solar Monitoring
tation (K.A.CARE) for Riyadh city, and King Abdulaziz University
olar Monitoring Station (KAU) for Jeddah city. The data obtained
y a subset of the Renewable Resource Monitoring and Mapping
RRMM) program developed and operated by The King Abdullah
ity for Atomic and Renewable Energy (K.A.CARE), as Saudi Ara-
ia’s leading renewable energy state agency. The RRMM program
f Saudi Arabia is a modern ground-based monitoring network.
t can be accessed through the online interactive Renewable
esource Atlas of Saudi Arabia through the website (K.A.CARE;
http://rratlas.energy.gov.sa>) [46]. The data are collected per 1 h
y rotating shadow-band radiometric stations in the selected
ites with high precision.

.2. Datasets and feature extraction

This paper aims at forecasting the future GHI (at the one-hour-
head time horizon) based on hourly data collected over four
ears (from June 1, 2013, to May 31, 2017) for all the selected
ites. Because of the different variables affecting GHI values, we
5

Table 2
Summary of input variables.
Input variable explanation Abbreviation Unit

The month number in a year M Month
The day number in a month D Day
The hour number in a day H Hour
the ambient temperature of the air T ◦C
Relative humidity RH %
Pressure of surface P hPa
Wind direction WD ◦N
Wind speed WS m/s
Peak wind direction PWD ◦N
Azimuth angle AA Â◦

Solar zenith angle SZA Â◦

Direct normal irradiance at the previous hour PrevHourDNI Wh/m2

Diffuse horizontal irradiance at the previous hour PrevHourDHI Wh/m2

Global horizontal irradiance at the previous hour PrevHourGHI Wh/m2

use the so-called feature engineering to classify the most impor-
tant variables. Such variables are categorized into three groups.
The first group is the time-related variables, including month,
day, and hour. The second group includes climate-related vari-
ables such as temperatures, humidity levels, etc. The one-hour
lag observations of GHI, DNI, and DHI have been constructed as
the third group to enrich the datasets. These newly extracted
features are donated in this study as PrevHourGHI, PrevHourDNI,
and PrevHourDHI, respectively. This process of feature extraction
is an integral part of this paper’s contribution.

Table 2 enlists all the contributing variables considered in this
analysis. Many factors affect the GHI based on the geographical
location of interest. The selected input variables are strongly
correlated to the quantity of the GHI in the sites of interest in
Saudi Arabia, based on the extensive assessment of solar energy
resources over the Arabian Peninsula [47]. Besides, since there is
little cloud cover, precipitation, fog, dew point, and snow in the
desert and arid geographic location of Saudi Arabia, these envi-
ronmental influences have little effect on the surface GHI [40].
Therefore, they are not considered in this study.

2.3. Data pre-processing and normalization

It is critically recommended that solar datasets be cleaned and
filtered before introducing them to machine learning models. It is
supposed to clean the night hours and retain them only between
sunrise and sunset by filtering them out of the database. Also,
since the data near sunset and sunrise are commonly unreliable,
a solar elevation-based pre-processing operation is performed:
solar radiation data shall be omitted for the solar elevation less
than 10 [19]. In this analysis, four years of hourly data were used
for each selected site. After the solar component data of GHI has
been cleaned and filtered, the overall number of hourly data used
in each dataset is around 15435. Mainly, approximately 56.25% of
the solar data were not utilized: 1.25% of data were outliers and
55% when the sun elevation is below 10◦ or within the nighttime.

After each time-series dataset is randomly divided into train-
ing (80%) and test (20%) datasets, the training datasets use an-
other pre-process. It is referred to as the k-fold cross-validation
technique [48]. It is a method of evaluation utilized to increase
the flexibility of a model and, hence, the proposed model’s ac-
curacy. Thus, the statistical analysis would generalize well into
a single dataset. This analysis uses K-fold cross-validation of the
training set to tune the SVR models’ parameters. The K-fold cross-
validation method splits the original samples of training datasets
into K equal sub-samples at random. The models are then tested
and validated using a single sub-sample as the validation data,
while the remaining K-1 sub-samples are utilized as the training

http://rratlas.energy.gov.sa/
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ata. These steps are repeated K times, where all the K sub-
amples serve precisely once as the validation dataset. After that,
he K outcomes from the folds can be averaged to have a sole
stimate. The average value of the reliability metrics presented
n this article is the k-fold. In this analysis, the value of k taken is
qual to 10, as explained in Fig. 3. Consequently, the findings are
ndependent of the training phase’s dataset because the conclu-
ions’ robustness is reduced by utilizing only one dataset (with
ts statistical characteristics). To summarize, the k-fold cross-
alidation technique is used to enhance models’ generalization
o be used more accurately.

Normalization of input variables data, sometimes recognized
y scaling, is vital when adapting ML-based predictive mod-
ls [49]. This functional implementation aims to prevent the
otential superiority of input variables with prominent numerical
igures over the variables with miniature figures. Also, because of
he reliance of kernel quantities mostly on input vectors’ inner
ultiplication, there are calculational complications induced by

arge-value input variables. Thus, overcoming numerical com-
lexities during computation processes is another essential as-
ect for normalizing input vectors. In this analysis, employing
q. (1), each input variable is scaled linearly to a range [0, 1].

n
i =

xi − xmin

xmax − xmin
(1)

where xi is the input-variable vectors with the measured observa-
tion points; the minimum and maximum figures which connect
to measured data series become xmin and xmax; xni is the scaled
version of xi.

3. Research methodology

In this section, the methods that we applied in this paper are
amply explained. These are a vital forecasting algorithm SVM,
a metaheuristic optimization algorithm GOA, a feature selection
6

algorithm BA, and a proposed hybrid model SVR-GOA-BAK that
integrates these three algorithms. Additionally, benchmark ML
algorithms used to assess and validate the proposed model’s
predictive efficacy are explained.

3.1. Support vector regression (SVR)

SVMs are supervised ML algorithms that can deal with classi-
fication and regression problems [50]. Based on input data types,
the structure of SVMs is built and optimized. In regression forms
of the SVMs, known as ε-SVRs, the initial primal objective is
to learn a hypothesis whose all regression prediction errors lie
within a predefined threshold, ε. However, the second funda-
mental objective of the learned function lies in the fact that this
function has the best possible generalization capacity. The last
goal is intentionally sought so that a flat model can be learned
and developed, eventually. Eqs. (2) and (3) impose these two
conditional objectives, which together form a standard convex
quadratic optimization problem with linear constraints set:

minimiz
w,b,ξi,ξ∗

i

1
2

∥w∥
2
+ c

n∑
i=1

(
ξi + ξ ∗

i

)
(2)

subject to

⎧⎪⎨⎪⎩
yi − ⟨w, xi + b⟩ ≤ ξi + ε, ∀n

⟨w, xi + b⟩ − yi ≤ ξ ∗

i + ε, ∀n

ξi, ξ
∗

i ≥ 0, ∀n

(3)

n which, for training points (xi, yi) , . . . , (xn, yn), n is the number
f data samples, the vectors of xi represent input values, and yi are
orresponding output value for xi. The upper and lower training
egression errors are represented by ξi and ξ ∗

i , respectively. Such
raining errors are insensitive to a specific limit characterized by
, after which penalties will start adding up to the cost function.
is the normal vector. C > 0 is the regularization parameter that
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Fig. 3. K-fold cross-validation method, K = 10.
ontrols the tradeoff between the two different goals imposed in
qs. (2) and (3).
To find a solution to the optimization problem of the SVR for-

ulated by Eqs. (2) and (3), standard dual optimization through
agrange multipliers is used. Several transformations are imple-
ented after that the Lagrangian is computed until Eq. (4) is
cquired:(
x, αi, α

∗

i

)
=

n∑
i=1

(
αi − α∗

i

)
κ (x, xi) − b (4)

Eq. (4) can be obtained by employing the concepts of kernels
trick, Lagrange multipliers, and optimality constraints. There are
almost four well-known functions in the literature review utilized
as kernels: linear, radial basis function (RBF), polynomial, and sig-
moid. However, for this study, the RBF is under consideration. The
RBF is deliberately chosen because of its computational efficiency,
where it generally outperforms the other polynomial and sigmoid
functions [51]. It is also highly nonlinear, including having fewer
variable parameters and infinite-dimensional mapping space [52].
The used kernel is expressed in Eq. (5) below:

K
(
xi, xj

)
= e−γ

(
∥xi−xj∥

2
)

(5)

In which γ ∈R, γ > 0 represents the width of the radial basis
kernel function.

The architecture of SVR based upon Eq. (4) is shown in Fig. 4,
where the conditions of Karush–Kuhn–Tucker’s are considered
to solve a quadratic optimization problem.

(
αi − α∗

i

)
values are

nonzero support vectors, and they are employed to acquire the
decision function. Optimizing the two set-by-user hyperparame-
ters, C and γ , is considerably significant to learn a highly accurate
prediction model. Instead, using optimization techniques to de-
termine these parameters’ optimal values is gaining attention in
recent works.

The SVR algorithm is selected in this study due to its merits
that can be summarized as follows [26]:

• It is considered remarkably accurate, reliable, simple-to-
implement, and robust to the outliers.

• It can model highly nonlinear complicated patterns and
trends seen in weather and solar data series, where you can
select from various kernels.

• Compared to other regression models, it is less vulnerable
to common overfitting problems, particularly in spaces with

high dimensionalities.

7

Fig. 4. The architecture of SVR in the scope of optimization solver [50].

• It provides a compact description of the learned model,
allowing experiments to be replicated by interested re-
searchers with the same results.

• The learned regression model can be easily updated.
• It performs well when the training data is small, and the

number of features is extensive. This feature enhances the
generalization ability of the proposed method usages for
monthly and annual forecasting of solar radiation where
smaller sets are available for training the models.

• The characteristics mentioned above make it one of the most
used methods in solar energy forecasting.

3.2. Grasshopper optimization algorithm (GOA)

This paper adopts a modern swarm intelligence technique
known as the grasshopper optimization algorithm (GOA). It is
based on nature. Saremi et al. proposed this optimization tool
and applied it to handle challenging structural optimization prob-
lems [43]. The suggested algorithm mathematically models and
imitates the grasshopper swarms’ behavior in nature to solve
optimization problems. In GOA, the search process is logically di-
vided into inclinations: exploration and exploitation. This search
process is implemented by search agents: adults and nymph
grasshoppers. Naturally, adult grasshoppers abruptly move long
distances. Thus, they are utilized to globally search the whole
search space to find better regions of food supplies. In other
words, they perform the exploration process. In contrast, nymph
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rasshoppers are utilized to move and target a particular neigh-
orhood or area locally. This is known as exploitation in optimiza-
ion terminology.

A smooth balance between exploration and exploitation is
nsured by GOA, leading to a less complicated algorithm mathe-
atically. Saremi et al. found a way to model the swarming be-
avior of grasshoppers mathematically. The mathematical model,
hich is used to stimulate the grasshoppers’ swarming behavior,

s symbolized below:

i = Si + Gi + Ai (6)

where Xi represents the ith grasshopper’s position. Si implies the
concept of social interaction. In the meantime, while Gi sym-
bolizes the force of gravity imposed on the ith grasshopper, the
wind advection is shown by Ai. Notice that the equation can be
rewritten as Xi = r1Si + r2Gi + r3Ai to provide random behavior,
in which r1, r2 and r3 are randomly selected numbers in [0-1].
Mathematically, the GOA algorithm can be implemented by the
following steps:

Step 1: the component Si of Eq. (6) is determined as follows:

Si =

N∑
j=1,j̸=i

s
(
dij

)
· d̂ij (7)

In which, the ith and jth grasshoppers are separated by a distance
denoted as dij, which is determined by dij =

⏐⏐xj − xi
⏐⏐. The unit

vector between the ith and jth grasshoppers is represented by
dij = (xi − xj)/dij. Finally, and to consider social forces, a function
s is defined as presented in Eq. (8):

s (r) = f · e−
r
l − e−r (8)

In which, f stands for the attraction intensity, l represents the
attractive length scale and r =

⏐⏐dij⏐⏐. The function s can split the
space between two grasshoppers into three zones: repulsion,
comfort, and attraction.

Step 2: the component GI of Eq. (6) is determined as follows:

Gi = −g · eg (9)

In which the gravitational constant is denoted by g , whereas eg
s the unit vector heading to the globe center.

Step 3: the symbolic component AI of Eq. (6) is determined as
ollows:

i = u · ew (10)

here u and ew represent a constant drift and a unity vector
n the wind direction, respectively. Notice that since Nymph
rasshoppers lack wings, their motions are strongly associated
ith the wind direction.
By substituting the components of SI, GI, and AI into Eq. (6),

his equation is expanded as below:

i =

N∑
j=1,j̸=i

s
(⏐⏐xj − xi

⏐⏐) ·
xj − xi
dij

− g · eg + u · ew (11)

ere N represents the grasshoppers’ number.
Since the grasshoppers quickly reach their comfort zones and

he swarms do not converge to certain points, the mathematical
odel shown in Eq. (7) cannot handle the optimization problems
irectly. To overcome this obstacle, an amended alternative of
his equation is formulated as below:

d
i = c

⎛⎝ N∑
j=1,j̸=i

c ·
ubd − lbd

2
· s

(⏐⏐xdj − xdi
⏐⏐) ·

xj − xi
dij

⎞⎠ + Td (12)

ere lbd and ubd stand for the lower and upper boundaries in
he Dth dimension, respectively. Td constitutes the location of the
ptimum solution it has found yet.
8

The decreasing coefficient c is used in Eq. (12) to shrink the
comfort zone, repulsion zone, and attraction zone. It is also worth
noting that Eq. (12) contains the adaptive parameter c twice for
the following purposes:

• As the number of iterations increases, the target’s grasshop-
pers’ movements are reduced by the first c from the left.
This parameter, in other words, balances the entire swarm’s
exploration and exploitation of the target.

• The attraction, comfort, and repulsion regions are reduced
among the grasshoppers by the second c parameter. This
reduction is proportional to the number of iterations.

Grasshoppers force a gradual and smooth balance between dis-
covery and exploitation due to the differing comfort zone pa-
rameter c. This feature allows GOA to avoid being stuck in local
optima and instead seek an accurate estimation of the global
optimum. The dynamic coefficient c in every iteration can be
worked out as below:

c = cmax − l ·
cmax − cmin

L
(13)

where cmin and cmax stand for the minimum and the maximum
values of the coefficient c, respectively. While l refers to the cur-
rent iteration, L represents the highest iterations. In the analysis
setup, 0.00001 and 1 are the values of cmin and cmax parameters.
We used high repulsion rates in this study because repulsion
is a critical technique in the GOA algorithm for avoiding local
solutions. The results show that high repulsion rates prevent
grasshoppers from stagnating in local optima.

The GOA is mainly selected in this study to optimize the SVR’s
hyperparameters due to the following reasons:

• Grasshoppers efficiently locate the promising areas of an
assigned search space.

• Grasshoppers experience sudden, radical changes in the
early stages of optimization, which aids them in searching
globally.

• In the final stages of optimization, grasshoppers head to
travel locally, allowing the exploitation search of the space.

• Grasshoppers force a gradual and smooth balance between di
covery and exploitation due to the differing comfort zone
parameter c. This feature allows GOA to avoid being stuck
in local optima and instead seek an accurate estimation of
the global optimum.

• The GOA optimizer improves grasshoppers’ fitness values,
proving that it can significantly boost a randomly generated
grasshoppers’ population.

• As the number of iterations increases, the target’s fitness
improves, meaning that the global optimum’s estimation
improves proportionally to the number of iterations.

• GOA can solve real-world problems involving unknown
search spaces.

• GOA outperforms other current algorithms when tackling a
range of existing or new optimization problems.

To sum up, the steps in which the GOA is executed can be found
in Fig. 5.

3.3. Boruta feature selection algorithm (BA)

The BA is designed as an ensemble-based feature selection al-
gorithm [53]. It emulates the RF’s working theory with additional
mechanisms to achieve superior results. Its name is derived from
a god of the forest in Slavic mythology. The BA is mainly built to
distinguish the so-called ‘‘all relevant variables’’ in classification
or regression problems. This method’s key idea is to use statistical
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Fig. 5. The pseudo-code of the GOA optimization algorithm.
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esting and multiple runs of RF to compare the original predictor
ariables’ importance with those with an increased level of ran-
omness. This extra added randomness offers a better picture of
hich variables are important and relevant. The BA execution is
omposed of the subsequent steps:

(1) Make copies of all input variables, known as shadow at-
tributes, through expanding the information system.

(2) Disturb the shadow attribute values to decrease the rela-
tionship with the output variable(s).

(3) Obtain the importance values of all features, including the
shadow attributes, by training an RF regressor upon the
new expanded dataset. Such important values are known
as Z scores.

(4) Choose the maximum Z score among shadow attributes
(MZSA). After that, assign any feature that scored better
than MZSA to a hit.

(5) Features that have still need to be evaluated for importance
are then ordered to perform the two-sided equality test
with MZSF.

(6) Features with a Z score vastly larger than MZSF are labeled
"important’’, whereas features with a Z score smaller than
MZSF are labeled ‘‘unimportant’’.

(7) Delete each unimportant variable and the whole shadow
attributes.

(8) The preceding steps are reiterated until all variables have
been classified or the algorithm has exceeded a pre-specified
number of the random forest runs.

Interestingly, the BA defines all relevant variables in the in-
ormation system and returns the importance ranking of features
rom the most important to the least important. It also assigns
mportant variables with numerical scores ranking their impor-
ance. Thus, this can help researchers construct different input
ombinations based on its feature importance ranking to find
he optimal feature set. One should notice that the BA authentic
xecution, based on the standard randomForest R package, was
omputationally heavy [51]. Even though the Boruta method’s
pplications in high-dimensional datasets were challenging, it
as utilized in more than 100 studies. The ranger package is
sed in the 5.0 version of the Boruta package to train the random
orest and estimate variables’ importance. In conclusion, more
nformation about using the Boruta package amply can be found
n [53].

.4. The establishment of the proposed model (SVR-GOA-BAK)

In this section, a hybrid model, denoted SVR-GOA-BAK, is

roposed to boost the performance accuracy in one-hour GHI

9

predictions. Three practical algorithms are integrated into SVR-
GOA-BAK: BA for feature selection, GOA for parameter optimiza-
tion, and SVM regressor. The proposed model BA-GOA-SVRK is
parameterized with K, which indicates the number of input fea-
tures participating in building the proposed model according to
the K highest scores of importance ranked by BA. In the SVR-
GOA-BAK, BA is first used to choose important features and delete
unimportant ones from the input variables considered in this
study. GOA is then employed in the training phase to optimize
and set two optimal hyperparameters of the SVM (C and γ ).
ltimately, we harness the proposed SVR-GOA-BAK model to
xecute the forecasting phase. The basic flowchart of SVR-GOA-
AK is depicted in Fig. 6, which comprises the following four
teps:

tep 1: Data selection and preparation:

• From the original time series dataset, determine time and
weather variables. Also, extract the previous-hour obser-
vations/lags of the three solar radiation components (Pre-
vHourDNI, PrevHourDHI, PrevHourGHI) and then add them
as new features (see Table 2, Section 2.2). There are 14 input
variables to be considered in each dataset.

• The data pre-processing and normalization steps on the
input GHI series dataset are executed, as explained in Sec-
tion 2.3.

tep 2: Feature selection by BA:

• Apply the BA to provide unbiased and consistent selection
and ranking of important and non-important input variables
from the GHI series datasets.

• According to important features ranking, construct different
input combinations, denoted as (K=1, K=2, . . . , K=All). The
K=1 set includes only the first most important feature; the
K=2 set includes only the two most important features, and
up to the end set K=All, where it has all the important
features defined by BA. The objective is to find the minimal
optimal set of inputs.

tep 3: Optimization by GOA:

• Employ GOA to optimize the two hyperparameters of SVR:
C and γ .

• The final regression models will be developed based on the
different input combinations (SVR-GOA-BA1, SVR-GOA-BA2,
. . . , SVR-GOA-BAAll).

tep 4: Forecasting by SVR-GOA-BA :
K
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Fig. 6. Flowchart of the proposed research framework.
• Use the testing samples to evaluate the corresponding de-
veloped predictive models and return the prediction results.

• Compare all developed models’ results based on evaluation
metrics (see Section 4.1).

• Select the best model with the best error measures. Thus,
the best model’s input combination is considered the opti-
mal set of features, and its hyperparameters C and γ are the
optimal values for SVR.

• Repeat all previous steps for each site’s dataset indepen-
dently.

.5. Benchmark machine learning algorithms

In this section, each ML algorithm used for comparative per-
ormance assessment purposes is briefly described: ANN, DT,
NN, and RF. It can be noted that each considered algorithm be-
ongs to a particular family in supervised categories of ML regres-
ion algorithms. The ANN belongs to the non-parametric family,
hile KNN and DT are categorized under clustering and decision-
ree-based families, respectively. From the ensemble family, the
owerful RF is selected. This is intended to grand this research
tudy of diversity, solidarity, and unbiasedness.

.5.1. Artificial neural network (ANN)
The ANN is the most widespread machine learning algorithm

or prediction intents; thus, the article gives a few details solely.
full description of the ANN can be found in [54]. ANN is a non-

inear regressor that applies a basic structure of interconnected
10
parts. A three-layer MLP with feedforward backpropagation is
the sort of ANN employed here [55]. Input data, the first layer,
is processed by the hidden layer, the second layer, and an out-
put indication is sent to the output layer, the third layer. In a
feedforward MLP configuration, input variables and every neuron
extradite signals to the subsequent neurons in a unidirectional
fashion. A nonlinear sigmoid function was taken for the hidden
layer and a linear one for the output layer [56]. The Levenberg–
Marquardt (LM) learning method was chosen as the optimization
tool of the MLP: multiple architectures are evaluated using dif-
ferent numbers of neurons in the hidden layer, and the most
effective is preferred [57]. Generally practicing, the number of
neurons in hidden layers in the range of 3 to n+2, in which n
refers to the number of input variables in the input layer. ANN
is widely used for solar energy forecasting due to its powerful
nonlinear estimation ability [58].

3.5.2. Decision trees regression (DT)
The DT has become widely accepted and often used for fore-

casting applications in regression problems. It uses the simple
notion that a tree should evolve from roots to leaves. Therefore,
a DT begins with a root node that leads to other subsequent
non-leaf nodes. A test is implemented at each node by evaluat-
ing a particular condition on an input variable, either binary or
categorical. The branches continue to break until leaf nodes are
achieved to find a potential value of the predicted output. There
is, therefore, a route to pursue via decision-making from the root
node to the leaf nodes.
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DTs are efficient approaches applied for predictive studies of
both solar and wind energy. Prediction results are comparable
to specific other single data-driven methods such as artificial
neural networks and vector machine support. However, DTs have
the substantial benefit of being easy to comprehend when their
implementation and running are reasonably sophisticated. More-
over, they have the advantage of being able to discover and
spotlight complicated or hidden relationships within the data.

Multiple algorithms to construct decision trees have been
established. The classification and regression tree model (CART),
crafted by [59], is one of the most widely used algorithms for
solar radiation forecasting applications. In forecasting applica-
tions, CART stands for classification trees whenever the predicted
output is a class, while it refers to regression trees whenever
the expected outcome is a number. In this research, the CART
algorithm was implemented since it solves regression problems
and is not limited to classification problems.

3.5.3. K-nearest neighbors
The KNN is a non-parametric pattern recognition algorithm

that provides a forecast using the mean of the nearest K observa-
tions in the test dataset. KNN applies to problems of classification
and regression. Distance metrics are used to assess the nearness
of observations in the input space. A commonly used metric is
the Euclidean distance, for example. In addition to the distance
metric, K, the number of neighbors considered for predicting
the output variable can be freely selected. Low K values can
result in over-fitting problems, while high K values also lead
to even worse performance. One mechanism for determining an
optimal K value is to consider various subsets of the training data.
KNN has been optimized in this research by adjusting neighbors’
numbers (K) and monitoring RMSE metric values on training data
series. The RMSE value was at its lowest if the neighbors’ number
set to K=5. Additional KNN details can be found in [60].

3.5.4. Random forest (RF)
The RF is a non-parametric, supervised ML algorithm. It ex-

ploits alternative analyses, randomness strategies, and ensemble
methods to create subtle ML models without overfitting [61].
The forest is a set of regression decision trees that are trained
through bagging techniques. The notable merits of RF involve the
discovery of data anomalies, the detection of significant features,
the discovery of data trends, and the provision of informative
graphics [62]. The RF is one of the widely used algorithms for
solar energy prediction because of its simplicity, efficiency, and
variety. Thus, it is considered in this study. Detailed information
about RF can be found in [63].

4. Results and discussion

In this section, an overview of the statistical indicators used
in evaluating all developed models’ effectiveness is given. After-
ward, the feature selection analysis results, the proposed model
performance, and the comparative performance assessment are
sequentially presented.

4.1. Performance evaluation metrics

Several statistical metrics of error can be utilized to assess
the established models’ predictive effectiveness. This research
primarily takes six metrics into account, namely: the root mean
square error (RMSE), the normalized root mean square error
(nRMSE), the goodness of fit (R2), the mean absolute percentage
error (MAPE), mean absolute error (MAE), and normalized mean
11
absolute error (nMAE). Eqs. (14)–(19) mathematically represent
these metrics as below:

RMSE =

√ 1
N

N∑
t=1

(ft − yt )2 (14)

RMSE =

√ 1
N

N∑
t=1

(
ft − yt

ymax − ymin
)2 × 100% (15)

2
= 1 −

∑N
t=1(fi − ỹ)2∑N
t=1(yi − ỹ)2

(16)

APE =
1
N

N∑
t=1

⏐⏐⏐⏐ ft − yt
yt

⏐⏐⏐⏐ × 100% (17)

AE =
1
N

N∑
t=1

|ft − yt| (18)

MAE = (
MAE
ỹ

) × 100% (19)

In which N reflects the number of observed points participated
in the process of evaluation; ft and yt refer to the forecasted and
observed values of the target at the time step t; ymax and ymin
indicate the maximum and minimum of the observed values of
the target yt ; the average of the observed values of the target
variable y is ỹ. This average is calculated on the N data. Although
the RMSE determines a prediction model standard deviation,
nRMSE is used to compare models with different scales expressed
as percentages [49]. Also, a model’s R2 determines how well the
odel suits a series of observations in regression problems. To
ssess the performance efficacy of a predictive model as a per-
entage, MAPE is often used. MAE quantifies forecast errors with
focus on the mean error rather than individual extreme events.
lower value for RMSE implies a better model efficacy. Smaller
AE values, like the RMSE, denote more excellent agreement
etween measured and forecasted values. The model is the best
odel when the costs of nRMSE, nMAE, and MAPE are close to
ero, and R2 is close to one.

.2. Feature selection analysis

To assess the importance of significant features in predicting
HI’s future estimates, the BA is implemented. Initially, the pro-
osed strategy considers 14 features for the ultimate choice of the
ndependent input variables. The BA was implemented through
ts publically available R package by using 100 iterations. Indeed,
o substantial changes in the study outcomes were noted beyond
00 runs. For the three sites of interest, the BA-based feature
election technique’s findings are depicted by Figs. 7–9.
In Figs. 7–9, box plots show the importance of the independent

ariables evaluated by BA. Variables marked with the green box
lots are important because of their greater predictability than
he shadow features, marked in blue colors. For all three study
ites, all the independent variables were identified as important.
hus, all 14 variables will be utilized in building different input
ombinations to forecast the future estimates of the GHI values
n the three cities. There will be 14 different input sets for each
ite, meaning 14 predictive models to be developed for each
ocation based on the proposed framework, as can be seen in the
ext section. This is intended to discover the minimal optimal
et of inputs to overcome underfitting or overfitting problems.
oreover, the variables marked in red in BA outcomes have less

nformative capacity than the shadow attributes. Therefore, they
re excluded from the ultimate set. Also, the variables with yellow
re considered tentative. As a result, none of the considered
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Fig. 7. The findings of the feature selection analysis on the Dhahran dataset.
Fig. 8. The findings of the feature selection analysis on the Riyadh dataset.
ndependent variables emerged as tentative nor insignificant in
ll the three datasets associated with this study’s three sites.
The SZA, AA, and PrevHourGHI variables have proven to be

he most significant variables, ranked in the same descending
rder of importance, for all different datasets collected from the
hree sites. Following these variables, the PrevHourDNI variables
anked fourth in importance in both the Dhahran and Riyadh
atasets, while it came ninth in the Jeddah series. Conversely, the
revHourDHI variables became less significant, where it ranked
enth in both Dhahran and Riyadh and ninth in Jeddah. Further,
he wind-related variables were often ranked the lowest in the
mportance of the three locations of interest. Indeed, embracing
he idea of extracting new features from lag observations of
12
the solar irradiance’s three components to enrich the informa-
tion system has proven helpful in increasing GHI predictability.
Consequently, this research recommends that future researchers
consider lags observations of GHI and DNI variables as inputs into
their potential developed models.

Finally, the seen consistency in BA’s findings asserts that the
proposed algorithm has the strength to provide an unbiased
and stable selection of important and non-important features
from an artificial dataset. As integrating more variables can cause
overfitting problems, the novel BA’s ability to rank features in
descending order of importance can help researchers determine
which features are relevant to GHI prediction. Therefore, dis-
carding irrelevant or even less relevant variables can ease the
computational complexity and time associated with optimizing
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Fig. 9. The findings of the feature selection analysis on the Jeddah dataset.
able 3
redictive performance of the SVR-GOA-BAKmodel.

Dhahran Riyadh Jeddah

Best model SVR-GOA-BA11 SVR-GOA-BA9 SVR-GOA-BA12
Number of inputs 11 9 12
RMSE (W/m2) 45.0903 49.8129 41.1592
nRMSE (%) 4.35 4.67 3.96
R2 0.98823481 0.98863249 0.98883136
MAPE (%) 9.13 7.24 6.45
MAE (W/m2) 24.7827 23.7835 18.7913
nMAE (%) 2.37 2.18 1.78
C 7214.03906 1079.400744 1618.60915
γ 0.525261 1.610183 1.61277

the proposed scheme’s hyperparameters, as can be seen in the
next section.

4.3. The performance of the proposed model SVR-GOA-BAK

For conducting predictive analytics, and after identifying the
anking of importance of the independent features for each site’s
ataset by BA, an SVR model kernelized with RBF is applied to
he time-series datasets. SVR’s two hyperparameters, C and γ ,
re optimized through GOA in the training phases. For each site,
ourteen SVR-GOA-BAK models (SVR-GOA-BA1 to SVR-GOA-BA14)
are built based on fourteen different input variable sets (K=1 set
to K=14 set). In each site’s dataset, the K=1 set includes only the
first most important feature, while the K=14 set includes all the
14 important inputs ranked by BA (see Figs. 7–9). This analysis
employs the mean absolute percentage error measure (MAPE),
also utilized as the GOA’s objective function, as the selection
criterion between SVR-GOA-BAK model architectures. The target
or all the models is to forecast the GHI values at the hourly level
or the chosen sites.

During the execution of the experiment, each time-series
ataset is randomly divided into training (80%) and test (20%)
atasets. The training set is used to build the predictive models,
hereas the test data sample is used to assess the forecasting
ccuracy. Notably, the same training and test sets are constantly
ntroduced to all the developed models. Such models are all being
13
developed in the MATLAB environment. For GOA, the maximum
number of iterations of all built models is fixed to 50, and the
search agents’ number is at 30. The analysis employs lower and
upper bounds of the two hyperparameters of SVR C and γ set
to [0–10000] and [0–2]. Also, the MAPE function is selected as
the GOA’s cost function to be minimized. All the input variables
are normalized between 0 and 1 for the performance metrics cal-
culations and for mitigating the computational complexity during
models’ hyperparameters searching. The predictive efficacy of the
built SVR-GOA-BAK models is assessed with new datasets (such
data are not utilized during the model’s development phase).
Table 3 summarizes the proposed models’ best predictive per-
formance, corresponding values of the SVR’s hyperparameters
optimized by GOA, and minimal optimal set of features for all
the sites.

From Table 3, it can be observed that the values of MAPE are
lower than 9.13% for all three sites. nRMSE’s estimates are also
lower than 4.67%. The average difference between the forecast
and the observed GHI, given by nMAE, is less than 2.37%. It is
estimated that the values of RMSE, MAE, and R2 are at a low
level. By comparing the findings of RMSE and RMSE values for
all locations, it is apparent that very substantial errors in fore-
casting are unlikely to have happened. No site needs the whole
set of important input variables (K=14 set) to achieve the best
predictive performance. Hence, the inference can be drawn that
the efficacy of SVR-GOA-BAK in predicting the next-hour GHI
predictions for Dhahran, Riyadh, and Jeddah sites are exceptional.
Further, a closer look at the performance metrics helps gain more
insights. The Jeddah site’s MAPE, nRMSE, and nMAE values are
lesser than the other sites, and the number of its model’s inputs
is the highest at 12. Contrarily, the optimal number of inputs
into the Riyadh site’s predictor is the lowest at nine variables. In
terms of MAPE, nRMSE, nMAE, and R2, it is possible to label GHI
patterns in the Jeddah site as more predictable than Dhahran and
Riyadh’s sites. Therefore, it can be assumed that GHI dynamics in
Jeddah city in Saudi Arabia are more systematic than the other
two cities. Accordingly, the findings will enable policymakers to
shape future policies. Fig. 10 depicts the performance metrics
values to amply assess all the built SVR-GOA-BAK models’ efficacy
based on different combinations of important inputs (K=1 set to
K=14 set) for the three sites through heatmaps plots.
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Fig. 10. Performance evaluation of the SVR-GOA-BAK model with different input variables for all sites.
From Fig. 10, it is evident that the MAPE and nRMSE estimates
cquired from all the developed SVR-GOA-BAK models in all sites
re almost always lower than 22% and 10%, respectively, even if
nly a single input is forwarded to the regressor. For example,
he obtained values of MAPE and nRMSE indicators are 16.77%
nd 8.97%, respectively, in Riyadh when only one input is used
o build the regressor. Furthermore, it can be seen from Fig. 10
hat BA-GOA-SVR1 and BA-GOA-SVR2 models are associated with
he worst forecasting performance at all study sites. For instance,
n Dhahran, the MAPE, nRMSE, and R2 values obtained for SVR-
OA-BA1 are 22.26%, 9.46%, and 0.9450, respectively. On the other
and, the built models become more accurate by utilizing the
hree most important features and more for all the sites. For
xample, in Jeddah, the obtained MAPE ranges between 9.443%
nd 7.3323% for the models from SVR-GOA-BA3 to SVR-GOA-
A14. Thus, it can be inferred that utilizing only the three most
mportant features of each site’s dataset selected and ranked by
A would provide reliable forecasting results compared to the
est-proposed model for each location. Also, similar results are
ound with RMSE, nRMSE, and R2. This phenomenon is visually
epicted in Fig. 11 through the scatter plots of the observed vs.
orecasted GHI values generated by the proposed models using
he Jeddah site data. In Fig. 11, the subgraph with red dots refers
o the model associated with Jeddah’s best predictive efficiency,
VR-GOA-BA12.

.4. Comparative performance assessment

For comparison of the efficacy, the proposed SVR-GOA-BAK
odel is firstly compared to the standalone SVR model. All the

ourteen informative features considered in this research’s analy-
is have been selected as independent input variables for training
he standalone SVR. Table 4 presents the values of the six metrics

f performance for all the considered sites.

14
Table 4
Comparison of SVR-GOA-BAK and SVR.
Error metric Site Standalone SVR SVR-GOA-BAK

a

RMSE (W/m2)
Dhahran 56.311 45.0903
Riyadh 64.8953 49.8129
Jeddah 47.04534 41.1592

nRMSE (%)
Dhahran 5.44 4.35
Riyadh 6.09 4.67
Jeddah 4.52 3.96

R2
Dhahran 0.981685 0.98823481
Riyadh 0.980694 0.98863249
Jeddah 0.983072 0.98883136

MAPE (%)
Dhahran 15.14 9.13
Riyadh 10.67 7.24
Jeddah 9.98 6.45

MAE (W/m2)
Dhahran 31.0125 24.7827
Riyadh 35.9057 23.7835
Jeddah 28.4202 18.7913

nMAE (%)
Dhahran 2.97 2.37
Riyadh 3.3 2.18
Jeddah 2.65 1.78

aK = 11 for Dhahran, K = 9 for Riyadh, and K = 12 for Jeddah.

From Table 4, It is amply clear that the SVR-GOA-BAK models’
obtained MAPE figures are remarkably lower than the standalone
SVR model in all sites. For instance, approximately a 40%-better
solution has been acquired in Dhahran after applying the pro-
posed prediction scheme. Likewise, the prediction accuracy has
improved by around 32% and 35% in Riyadh and Jeddah. In terms
of RMSE and MAE, the high variations of forecasting errors seen
in standalone SVR models are outstandingly reduced by the pro-
posed models. Therefore, in terms of predictive accuracy, the
inference can be derived that SVR-GOA-BAK exceptionally out-
performs the standard SVR model in predicting hourly GHI in the
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Fig. 11. Scatter plots of the observed vs. measured GHI prediction by different proposed models for Jeddah, the best in blue SVR-GOA-BA12 .
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hosen sites in Saudi Arabia. The integration of GOA for optimiz-
ng the SVR’s parameters and BA for the feature selection process
n the proposed SVR-GOA-BAK model is mainly responsible for
mproving the forecasts. Nonetheless, the rationalization of the
VR-GOA-BAK model’s effectiveness upon the told comparative
ssessment might not mirror the performance’s actual nature.
The SVR-GOA-BAK model’s efficacy should be compared to

everal excellently known models to assess its superiority. In
his article, four different models are used to achieve this ob-
ective: DT, KNN, ANN, and RF. However, neither GOA nor BA
as been incorporated or applied to these models. In selecting
he independent input variables for training DT, KNN, ANN, and
F, all fourteen informative features considered in the analysis
f this research have been chosen. In DT, the maximum tree
epth was fixed at 21, and the minimum number of obser-
ations was fixed at 5 for the leaf nodes. A backpropagation
pproach by Levenberg–Marquardt (LM) learning algorithm was
sed in optimizing the ANN model, with one hidden layer con-
isting of 14 hidden nodes. Also, Sigmoid activation functions are
tilized when the learning rate magnitude is fixed at 0.1. For
NN, the number of neighbors k was set at 5. In implementing
F, the number of trees to grow (ntree parameter) was set to
00, while the maximum tree depth (mtry) was fixed as the
efault value. MATLAB and Python programming environments
ave established all these models. All the programs have been
xecuted in a 64-bit Windows operating system using the Intel
ore i5-7200U (2.50 GHz) processor with 8.00 GB of RAM. Table 5
ummarizes the findings of the comparative analysis exhibited by
ll considered evaluation metrics.
It becomes apparent fromTable 5 that the MAPE, nRMSE, and

MAE of the proposed SVR-GOA-BAK model in all selected sites
s lower than all the other benchmark models. Notably, among
he competing models and in terms of MAPE, RF’s performance is
etter than the rest of the models. There is no primary difference
n both the RF and ANA results. On the contrary, DT’s predictabil-
ty, followed by KNN, has appeared to be the least satisfactory
mong all models as its MAPE, nMAE, nRMSE, MAE, R2, and
MSE are higher than any other model for all locations. The
valuation indicators’ values demonstrate that the proposed SVR-

OA-BAK framework is statistically superior to the four models o

15
sed for comparison at every site. Fig. 12 shows, for example,
he predictive efficacy of the proposed BA-GOA-SVRK for Jeddah,
n which the forecasted data effectively pursues the actual data
ith minor deviations. Also, Fig. 12 shows a slight variation in the
agnitude of residual errors, and substantial errors are unlikely

o have occurred. The statistical error metrics in Table 5 indicate
hat RMSE, nRMSE, MAE, nMAE, R2, and MAPE are relatively low.
Fig. 13 depicts the GHI prediction results of the developed and
contrast ML models for Riyadh.

Additionally, the boxplots are created to provide a more thor-
ough evaluation of the predictive performance of the developed
forecasting models. In Fig. 14, a box and whisker plot (BWP)
depicts the distribution of the predictive errors (nAME) when
all locations are grouped together. A numerically distant data
point from the rest of the data is referred to as an outlier.
When examining a BWP, an outlier (indicated by black circles)
is defined as a data point that is situated outside the whiskers
of the box plot with a value that is greater than 1.5 times the
interquartile range from the box’s top or bottom. In line with the
prior inferences, the proposed SVR-GOA-BAK models outperform
the RF, ANN, Standalone SVR, KNN, and DT models in all locations,
owing to the lower spread of outliers in BWP plots. The results of
the comparative assessment rationalize the proposed SVR-GOA-
BAK model’s superiority over the others. Hence, the importance
f integrating a devoted feature engineering technique through
A with the learning ability of SVR regressor that is optimized
y GOA to model the patterns for predicting the hourly GHI is
ppropriately validated.

.5. Comparison with benchmark optimization algorithms

Multiple experiments are carried out in this section to validate
hat the synthesis of SVR, GOA, and BA provides the best results.
his simulation employs three optimizers to acquire the SVR
yperparameters. The first significant optimization technique is
SO, which demonstrates the traditional optimization perfor-
ance for SVR’s hyperparameters tuning. Eberhart and Kennedy
roposed PSO in 1995, and further information on this popular
lgorithm can be found in [64]. Compared to a recent evolutionary

ptimizer, the Cuckoo Optimization Algorithm (COA) is widely
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Table 5
Comparative performance assessment.
Error metric Model Dhahran Riyadh Jeddah

RMSE (W/m2)

DT 79.8467 90.7218 78.6825
KNN 59.2137 64.8506 51.6999
ANN 46.5183 52.424 43.4204
RF 46.0629 49.9736 42.5572
SVR-GOA-BAK

a 45.0903 49.8129 41.1592

nRMSE (%)

DT 7.71 8.51 7.56
KNN 5.72 6.08 4.97
ANN 4.49 4.92 4.17
RF 4.45 4.69 4.09
SVR-GOA-BAK

a 4.35 4.67 3.96

R2

DT 0.96334225 0.962361 0.95922436
KNN 0.97970404 0.98069409 0.98227921
ANN 0.98743969 0.98743969 0.98743969
RF 0.98763844 0.98843364 0.988036
SVR-GOA-BAK

a 0.98823481 0.98863249 0.98883136

MAPE (%)

DT 21.17 20.45 18.68
KNN 16.54 14.08 11.45
ANN 9.95 8.10 9.09
RF 9.22 7.60 7.25
SVR-GOA-BAK

a 9.13 7.24 6.45

MAE (W/m2)

DT 57.5645 47.9761 40.1606
KNN 40.7822 44.1707 31.3185
ANN 27.0484 29.3686 22.7145
RF 25.2624 25.9656 20.3843
SVR-GOA-BAK

a 24.7827 23.7835 18.7913

nMAE (%)

DT 5.51 4.72 3.81
KNN 3.91 4.06 2.97
ANN 2.59 2.69 2.15
RF 2.43 2.39 1.93
SVR-GOA-BAK

a 2.37 2.18 1.78

aK = 11 for Dhahran, K = 9 for Riyadh, and K = 12 for Jeddah.
Fig. 12. Comparison of the measured and forecasted values of GHI for Jeddah.
sed in parameters tuning for machine learning algorithms [65].
he third optimizer, one of the latest optimization algorithms, the
ynamic optimization model Neural Network Algorithm (NNA), is
mployed to examine the new GOA’s outstanding performance in
uning SVR’s hyperparameters [66]. SVR-PSO-BA , SVR-COA-BA ,
K K

16
and SVR-NNA-BAK models are established to evaluate the novel
optimization algorithm GOA for 1-hour ahead GHI forecasting
compared to the recent optimizers of PSO, COA, and NNA. K in the
later models is equal to the optimal number of inputs found with
SVR-GOA-BA for each site. In short, the fundamental algorithms
K
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Fig. 13. Forecasting results of the proposed model and the contrast algorithms for Riyadh.
re chosen from among those new optimization algorithms as
here have been numerous optimization algorithms proposed in
ecent years.

Fig. 15 depicts the predictive accuracy of these four hybrid
odels for the three considered sites. The numerical results for

he SVR’s hyperparameters tuning by the four considered opti-
izers are shown in Table 6. For the same GHI datasets, the
redictive accuracy of SVR-GOA-BAK is greater than that of SVR-
SO-BAK, SVR-COA-BAK, and SVR-NNA-BAK, as it can be drawn
rom Table 6. Consequently, GOA’s ability to search for the SVR’s
yperparameters is more efficient than PSO, COA, and NAA op-
imizers. Simply put, the SVR-GOA-BAK method achieves high
ccuracy for 1-hour GHI forecasting and has the best efficiency
nd consistency among all basic techniques. As a result, the
ybrid SVR-GOA-BAK model is chosen for predicting in the study,
nd future researchers are advised to use it in their research
ased on their interests.

. Conclusions and future work

Forecasting global horizontal irradiance (GHI) levels is vital
ecause of its positive effects on climate changes, environmental
ollutions, renewable-energy-based innovations, economic-social
rowth, etc. Due to the high levels of random patterns in the
ime series of GHI datasets, this process is considered immensely
trenuous. The SVR-GOA-BAK model was proposed in this paper,
a hybrid learning approach to hourly-level predictive analytics
of GHI future values. The experimental studies were conducted
on Saudi Arabia’s hourly GHI figures from Dhahran, Riyadh, and
Jeddah cities. The critical research results are summarized below:

• In time-series forecasting models, utilizing lag observations
of solar energy components as defining features has ap-
peared as an ideal strategy. They can be used efficiently to
predict future values of GHI.

• In combination with SVR, the Boruta-based feature selection
algorithm provided superior predictions on all sites’ datasets
of this paper interest.

• Grasshopper optimization algorithm (GOA), an advanced op-
timizer, is proven to work effectively in searching for the
17
optimal values of SVR’s hyperparameters for the GHI predic-
tion with high precision. The explanation for this effective-
ness is that this optimizer has a compelling capacity to dis-
cover and harness the optimal solutions to high-dimensional
problems.

• The proposed strategy SVR-GOA-BAKhas outperformed dis-
tinct models such as standalone SVR, DT, KNN, ANN, and
RF. Thus, the SVR-GOA-BAK model is an effective method for
forecasting GHI values at the hourly level.

• Among the five competing models, the RF model has sta-
tistically achieved better outcomes than the remaining four
models. RF’s ensemble nature is primarily responsible for
this.

• Regarding SVR-GOA-BAK’s prediction findings, a conclusion
can be made that the Jeddah site is relatively more pre-
dictable than the other two cities.

In short, the paper’s final results can be fruitfully used for the
stakeholders’ practical intents. As Dhahran and Riyadh’s sites are
found to be less predictable, GHI values are less stable than the
location in Jeddah. Subsequently, lawmakers can amend policies
concerning sustainable growth and accelerate the development of
alternative-energy-based projects. The findings acquired should
also assist solar energy developers and decision-makers.

The predictive performance of the proposed model is superior
to others, as evidenced by the series of outcomes presented ear-
lier in this study. It can be used in other applications of interest.
However, the regression problem that is to be solved by the
proposed model is limited to the one-hour-ahead GHI predic-
tion. Also, it should be noted that the findings of the proposed
model are only restricted to the locations of interest or sites
with similar climate conditions. Regardless of the superior results,
the input variables used in the training phase of the predictive
strategy are limited to the available aforesaid meteorological
parameters. Furthermore, despite the multiple capabilities of the
powerful GOA, its use in this work is limited to tuning the SVR’s
hyperparameters.

Based on this discussion, we recommend that additional re-
search could be conducted. Firstly, more potential implemen-
tations of the developed method in tackling other regression
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Fig. 14. Boxplots of the nMAE encountered by the developed forecasting models for all tested locations in Saudi Arabia.
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Fig. 15. The results of the proposed model with different optimization techniques.
Table 6
Performance comparison of different optimizers for GHI forecasting.
Model Criteria Dhahran Riyadh Jeddah

SVR-GOA-BAK

RMSE (W/m2) 45.0903 49.8129 41.1592
nRMSE (%) 4.35 4.67 3.96
R2 0.98823481 0.98863249 0.98883136
MAPE (%) 9.13 7.24 6.45
MAE (W/m2) 24.7827 23.7835 18.7913
nMAE (%) 2.37 2.18 1.78

SVR-PSO-BAK

RMSE (W/m2) 46.0340 49.9497 42.7246
nRMSE (%) 4.41 4.69 4.0486
R2 0.98763844 0.98843364 0.98783721
MAPE (%) 9.14 7.29 7.2544
MAE (W/m2) 24.6016 23.9754 20.6106
nMAE (%) 2.39 2.20 1.95

SVR-COA-BAK

RMSE (W/m2) 50.2129 51.0776 42.604330
nRMSE (%) 4.8097 4.6938 4.03717
R2 0.98545329 0.9880360 0.987940418
MAPE (%) 10.06 7.3045 7.2436
MAE (W/m2) 28.6227 24.0608 20.47934
nMAE (%) 2.7416 2.21 1.94

SVR-NNA-BAK

RMSE (W/m2) 49.78560 49.94471 42.03924
nRMSE (%) 4.768736 4.68 3.9836
R2 0.98565396 0.988507931 0.988257265
MAPE (%) 9.932 7.27 7.3080
MAE (W/m2) 28.3724 23.8033 19.7262
nMAE (%) 2.72 2.19 1.87

* K = 11 for Dhahran, K = 9 for Riyadh, and K = 12 for Jeddah.
roblems about the energy data analysis field should be inves-
igated. Secondly, the predictive performance of the proposed
odel in predicting the GHI values with different time horizons

ike intra-hour, daily, monthly, or annually should be tested.
hirdly, to ensure the generalization of the results of the pro-
osed framework, more research on GHI forecasts in different
ocations is required, as the radiation on the earth’s surface varies
epending on the climatic conditions of the place. Fourthly, the
tilization of GOA as a feature selection tool should be investi-
ated and its performance then compared with the BA. Fifthly,
19
studying the potential of GOA as an optimizer to tune the hy-

perparameters of other machine learning algorithms is needed,

and then compare the results with this study’s findings. Finally,

future research should compare our approach to other cutting-

edge algorithms, especially deep learning algorithms, as they are
beyond the scope of this paper.
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