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Abstract—As electric vehicles (EVs) take a greater share in
the personal automobile market, their penetration may bring
higher peak demand at the distribution level. This may cause
potential transformer overloads, feeder congestions, and undue
circuit faults. This paper focuses on the impact of charging EVs
on a residential distribution circuit. Different EV penetration
levels, EV types, and charging profiles are considered. In order
to minimize the impact of charging EVs on a distribution circuit,
a demand response strategy is proposed in the context of a smart
distribution network. In the proposed DR strategy, consumers
will have their own choices to determine which load to control and
when. Consumer comfort indices are introduced to measure the
impact of demand response on consumers’ lifestyle. The proposed
indices can provide electric utilities a better estimation of the
customer acceptance of a DR program, and the capability of a
distribution circuit to accommodate EV penetration.

Index Terms—Customer choice, demand response (DR), distri-
bution circuit, electric vehicle (EV), home area network (HAN).

I. INTRODUCTION

EVERAL automobile manufactures are introducing elec-

tric vehicles (EV) to the mass market. While the wide-
spread adoption of EVs brings potential social and economic
benefits, the impact of EVs on electric power systems cannot be
overlooked. Analysis needs to be carried out at the distribution
level to evaluate the potential impact of the additional EV load
[1].

Majority of previous work regarding the impact of EV pen-
etration on electric power systems focuses at the transmission
level [2]-[4]. The Oak Ridge National Laboratory (ORNL) [5]
performed a thorough analysis of EV penetration into the re-
gional power grid, and reported that all regions would need ad-
ditional generation to serve the extra EV demand. However, in a
large system where many EV fleets are present, the problem may
not be visible unless everyone charges their EVs at the same
time. Recent research started to turn to the distribution level.
This is because the EV penetration shows more severe problems
in a smaller area due to a possible cluster effect [6]. The authors
in [1] provided an analytical framework to evaluate the impact
of plug-in hybrid electric vehicle (PHEV) loading on a distribu-
tion system and [7] used stochastic methods to study the pos-
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sible impacts of charging EVs on distribution network compo-
nents. The authors in [8] considered case studies with different
EV penetration levels and charging patterns and estimated the
maximum number of EVs that a distribution network can ac-
commodate based on an N-1 contingency condition. The authors
in [9] and [10] focused on the distribution system losses due to
EV charging. In [9] an optimal EV fleet charging profile is pro-
posed for minimizing the distribution system power losses. For
even smaller sized networks, authors in [11] and [12] empha-
sized on the integration of EVs at the distribution transformer
level serving a few houses and proposed household load control
strategies to tackle the transformer overloading problem.

While the literature review suggests that the analysis of EV
penetration into the distribution network is quite extensive, there
is still a need to take into consideration the vehicle driving pat-
terns. A more important contribution could be to develop a de-
mand response strategy that will accommodate EV fleets and
make the EV penetration invisible to the system. That is to main-
tain the original peak demand level experienced without EVs.

Over the last several decades electric utilities around the
world have deployed various types of demand response (DR)
programs to reduce their peak loads during stressed conditions
[13]. With advanced sensing and control technologies, the de-
velopment of demand response programs can be more creative
and flexible with many more possible options [14]-[17]. The
authors in [18] provided an overview of DR strategies in com-
mercial buildings. A scoping study was provided in [19] that
summarized and evaluated the existing methods for residential
demand response. While demand response applications in in-
dustrial and commercial sectors have been well studied in [17]
and [20]-[22], the residential demand response strategy taking
into account the consumer comfort still needs an in-depth
study. At the same time, there is the lack of indices to measure
the impacts of demand response on consumer convenience.

This paper proposes a demand response (DR) strategy for use
to manage the load in a residential distribution circuit. This is
in order to accommodate EV charging while keeping the peak
demand unchanged. The consumers will have the freedom to
choose what kind of household loads to be controlled, and when.
Consumer comfort indices are proposed to measure the impact
of DR on residential consumers. This proposed DR approach
can be customized to perform demand response in various seg-
ments and sizes of the network.

According to Federal Energy Regulatory Commission
(FERC) staff report [23], demand response programs can be
categorized into incentive-based and time (price)-based. The
report shows that the potential peak demand reduction mostly
comes from the incentive-based DR programs. Therefore this
paper focuses on the technical aspects of incentive-based DR
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strategy design that takes into account customers’ preferences,
comfort levels, and load priorities.

II. MODELING OF CIRCUIT LOAD AND EV CHARGE PROFILES

In this section, the load profiles of a distribution circuit and
an EV charge profile are modeled for the purpose of this study.
The load profiles of the distribution circuit are classified by load
types. The EV charge profile is created based on the driving
pattern, home arrival times, and EV types using a stochastic
method.

A. Modeling of the Distribution Circuit Load

In this paper, a distribution circuit is chosen for the study
and previously developed load models in [24] are used in the
simulations. Hourly load curves of an average household are
available from the RELOAD database [25], which is used
by the Electricity Module of the National Energy Modeling
System (NEMS) [26]. Based on the RELOAD database, resi-
dential loads are classified by the following nine types: space
cooling, space heating, water heating, cloth drying, cooking
refrigeration, freezer, lighting, others.

For the purpose of this study, all residential loads are classi-
fied into two categories: controllable and critical. Controllable
loads are defined as the loads that can be controlled without no-
ticeable impacts on consumer’s life style. The critical category
contains loads that are either very important (critical loads) or
loads that cannot be controlled. For residential houses, space
cooling/heating, water heater, and clothes dryer loads are con-
trollable; all other loads are considered either critical or noncon-
trollable.

In the previous study by the authors [27], physical-based load
models are developed for all types of controllable loads. The
model takes into consideration the consumer ownership rate
[28], which can be found in [29]. Data from the RELOAD data-
base are used to construct the critical load profiles.

B. Modeling of EV Fleet Charge

To create an EV fleet charge profile, it is critical to get the in-
formation on how long and how far the vehicles are driven, and
where and how long they are parked. According to the 2001
National Household Travel Survey [30], vehicles are parked
for more than 90% of the time. As this paper is looking at a
residential distribution circuit, it is reasonable to assume that
EV owners leave for work and return home at different times,
which impacts the charging profile. The authors in [31] analyze
survey data on the vehicle coming home time (plug-in time for
EVs). The finding indicates that the EV plug-in time is close
to a normal distribution curve. For this reason, this paper uses a
normal probability distribution function to describe the EV fleet
plug-in time.

EV driving patterns are used to determine the state of charge
in the EV. Fig. 1 shows the American daily driving distance dis-
tribution [30]. This study uses the Monte Carlo method to sim-
ulate the daily driving distances for each EV in the distribution
circuit based on the data in [30].

In addition to the driving patterns, battery usable capacities
and the charging power requirements (kW) are also used to
build the EV fleet charge profile. Table I shows the basic bat-
tery charge data of three popular EVs in the U.S. market.
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Fig. 1. American daily driving distance distribution [30].

TABLE I

EVS IN THE U.S. MARKET [32]-[36]

Make & Battery Energy All Electric Charge
Model Size Available | Range Power
GM 16kWh 8kWh 40 mi 1.9kW
Chevy Volt 3.3kW*
Nissan 24kWh 19.2kWh 100 mi 1.8kW
LEAF (LA4 mode) 3.3kW*
49kW (fast)
Tesla 53kWh 37.1kWh 244 mi 1.8kW
Roadster (Experiment) | 9.6kW*
16.8kW

* Recommended charging rate
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Fig. 2. EV Fleet charging profile.

Fig. 2 shows an example charging profile of a group of 100
EVs with the mix of 40% Chevy Volt, 40% Nissan LEAF, and
20% Tesla Roadster. Each type of EV has different charging
rates according to Table I. The recommended charging power
rates (*) are used to generate the simulation results presented in
Fig. 2. The EVs are assumed to come back home and plugged in
at different time according to a normal probability distribution
function with the mean at 18:00 and the variance of 1 h.

Note that EVs can be charged anywhere with charging sta-
tions installed. As our focus is to deal with excessive load during
peak hours for a residential distribution circuit, evening hours
are of interest. Therefore we only consider the time period that
is likely to be impacted by EV charging at home in the evening.

III. DEMAND RESPONSE STRATEGY DESIGN

The proposed demand response strategy is designed in two
layers: the neighborhood area network (NAN) and the home
area network (HAN). DR is designed to accommodate EV fleets
plugged into a distribution circuit while ensuring that the orig-
inal peak demand can be maintained with different EV penetra-
tion levels.
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Fig. 3. Sketch of sorted consumption queue and demand limit for each house.

A. Demand Limit Allocation for Each House at NAN

To make the EV penetration transparent when EVs are added
to a distribution network, the original load peak (before EV pen-
etration) should be set as the demand limit for the whole circuit.
Once the circuit-level demand limit is set, the demand limit for
each house is determined according to the methodology pre-
sented below. Then, each house is assigned its demand limit to
make sure the aggregated circuit demand stays within the cir-
cuit-level demand limit.

Fig. 3 shows the methodology to determine the demand limit
amount allocated to each household in the distribution circuit of
interest. This methodology can be described as follows: Firstly,
the NAN control center sorts all reported demand (kW) within
a distribution circuit. Then, the household demand limit (DL;,
red line) is set at the point where the summation of all household
demand to be served (shadow area) is equal to or less than the
peak load without EVs. As demonstrated in Fig. 3, the demand
limit will only be applied to the houses that have their electricity
consumption exceed the household demand limit. The houses
with lower consumption than this limit will not be affected.

DL; can be determined by solving the optimization problem
as shown in (1).

max(DL;)
Subject to :
N
Z Dm,,i S DLtotal,i
m=1
Lm,ia L'ln,i < DLL _
D'rn,i — { DLL. Ll,n:i 2 DLL m = 1./ 2., PN 7Z\Z’ (1)
where:

DL, household demand limit (kW) assigned to all
houses in time slot ;

D, i demand of the m'" house after DR (kW) in time
slot ¢;

DLiota1,;  available supply (kW) of the distribution circuit
of interest in time slot ¢;

L original demand of the m.'® house (kW) in time

slot 4.
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Fig. 4. Virginia Tech Electric Service (VTES) for case study [39].

B. Demand Response Strategy in HAN

Household loads are divided into two categories according
to Section II: critical and controllable. The critical loads will
not be controlled only report their status. The controllable loads
will be controlled by the HAN control center according to the
assigned demand limit. The DR strategy for a residential house
is that when there is a demand limit, HAN the control center
will check if the household demand in the next time interval
will be over the assigned limit. If yes, the control center will
deny demand requests from some noncritical smart appliances
according to customer pre set preferences [37].

If the HAN control center sees the total household demand
to exceed the demand limit, demand response actions will take
place. The demand response in the HAN is performed as fol-
lows:

Step 1) Customers set the load priority for each appliance.
For example, water heater may be of the highest
priority, heating, ventilation, and air conditioning
(HVAC) may be of the second, and clothes dryer
may be of the lowest priority.

Step 2) Customers perform preference settings for each ap-
pliance. For example, clothes drying job may have
to be finished by midnight, room temperature should
not be higher than 81 °F.

The proposed DR strategy allows customers to
change or reschedule their load priority and prefer-
ence settings at different times of the day.

Step 3) Perform demand response based on the preset load
priority and preferences. When the HAN control
center sees the preferences are being violated, the
corresponding loads’ priorities will be temporarily
raised to the highest possible level.

* For HVACs, the DR strategy is:

— Change the temperature set point once the de-
mand limit signal is received and the HVAC is
not of high priority.

— Set back the default temperature set point when
the room temperature exceeds the preset com-
fort range.

* For water heaters, the DR strategy is:
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— Turn the water heater OFF once the demand
limit signal is received and the water heater
load is not of high priority.

— Force the unit ON when the hot water temper-
ature falls below the preset comfort range.

* For clothes dryers:

— Turn OFF the heating coil in the clothes dryer
once the demand limit signal is received and
the clothes drying load is not of high priority.

— Force the unit ON when the HAN control
center foresees that a) the clothes drying job
will not finish within the preset duration; b) the
heating coil’s off time reaches the maximum
limit. Note that the motor load will keep on
running

* For electric vehicles:

— Stop charging the EV once the demand limit
signal is received and the EV is not of high
priority.

— Resume charging when the HAN control
center foresees that the EV charging cannot be
finished within the preset time duration.

The smart appliances will have two-way communication with
the HAN control center. Each smart appliance has an IC built in
to report the status and to receive the control signal. Recently,
some home electronic companies such as General Electric have
already started to produce smart appliances with IP based re-
mote control signal receiver [38].

IV. CONSUMER COMFORT LEVEL INDICES

To evaluate the DR impacts on consumer daily life, comfort
indices are needed to measure consumer comfort levels. The
consumer convenience indices are defined based on the severity,
scale, and duration of convenience violations for each control-
lable appliance.

A. Severity Indices

The severity indices are used to measure how severely the
consumer comfort levels are violated. The indices are based on
the maximum percentage deviation from the original settings.

1) Severity Indices for HVACs: For HVACs, the severity
index I,. nvac is defined as the largest room temperature devia-
tion in percentage taking into account all homes in a distribution
circuit. T; gvac is the actual room temperature while T, #yvac
is the room temperature setting.

T; avac — Ts mvac

X 100%) ©)

ISE HVAC = Inlax <‘
' T; vvac
2) Severity Indices for Water Heaters: For water heaters, the
severity index /., wr is defined as the largest hot water temper-
ature deviation in percentage taking into account all homes in a
distribution circuit. T; wy is the actual outlet hot water temper-
ature while T wq is the hot water temperature setting.

T; wu — Ts wn
lsewnp =max | | ——/———

x 100%) 3)

T, wn

3) Severity Indices for Clothes Dryers: For clothes dryers,
the severity index /,. cp is defined as the longest clothes drying
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TABLE 11
DISTRIBUTION CIRCUIT PEAK DEMAND AT DIFFERENT EV
PENETRATION LEVELS

Original New peak loads
peakloads 1y 50 gvs | w/ 100 EVs
Summer 1.60MW 1.66MW 1.75MW
Winter 2.60MW 2.6TMW 2.80MW

time delay in percentage taking into account all homes in a dis-
tribution circuit. ¢; cp is the actual clothes drying time while
s op 1s the original setting for the clothes drying time.

i,cD — ts.0D

i
Ise cp = max ( X 100%) 4)

ts,CD

4) Severity Indices for Electric Vehicles: For electric ve-
hicles, the severity index I,. gv is defined as the longest EV
charging time delay in percentage taking into account all homes
distribution circuit. #; gy is the actual EV charging time while
iy gv is the original EV charging time without DR.

L EV — tsEV
Lo pv = max (u X 100%) (5)
’ ts,EV

5) Severity Indices for Electric Vehicles: For EV charging at
home, the delay is usually not a problem unless the user needs
the EV in the evening, for which they will set a higher priority
for the EV. In that case, EV charging will be guaranteed. There-
fore the severity indices are not applicable to EVs.

B. Scale Indices

The scale indices are used to measure the number consumers
whose comfort levels are violated as a percentage of a total
household in the distribution circuit of interest.

1) Scale Indices for HVACs: For HVACs, the scale index
Iscmvac is defined as the maximum ratio, considering all time
slots in the study period, of number of homes with room tem-
peratures out of the comfort ranges in each time slot to the total
number of homes with HVAC in a distribution circuit. See (6),
where ngvac is the number of homes with the room temper-
atures out of preset comfort ranges in each time slot. N is the
total number of consumers in a distribution circuit and OR z¢ is
the ownership rate of HVACs.

NHVAC

1 [
N x OR oM) (6)

Isc HVAC = max (
2) Scale Indices for Water Heaters: For water heaters, the
scale index I, wr is defined as the maximum ratio, considering
all time slots in the study period, of the number of homes with
hot water temperatures out of the comfort ranges in each time
slot to the total number of homes in a distribution circuit. See
(7), where nwpg is the number of homes with the hot water tem-
perature out of preset comfort ranges in each time slot. IV is the
total number of consumers in a distribution circuit and ORywy
is the ownership rate of water heaters.

nwH

_MWH 100y 7
N x ORwr | %) )

Lo wn = max (
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3) Scale Indices for Clothes Dryers: For clothes dryers, the
scale index I,. c¢p is defined as the ratio of the number of homes
with clothes drying job delayed to the total number of homes
with electric clothes dryers in a distribution circuit. See (8),
where n¢p is the number of homes with clothes drying job de-
layed charge delayed longer than a preset comfort level. IV is the
total number of consumers in a distribution circuit and OR¢p is
the ownership rate of clothes dryers.

ncp

x 100% (®)

Tseop = 3 ORcp

4) Scale Indices for Electric Vehicles: For EVs, the scale
index I, kv is defined as the ratio of the number of homes with
EV charging delayed to the total number of homes with EVs in
a distribution circuit. See (9) where n gy is the number of homes
with EV charge delayed longer than a preset comfort level. V
is the total number of consumers in a distribution circuit and
ORgy is the ownership rate of electric vehicles.

nNEV

——— x 1009
N x OREV % A)

(€))

ISC,EV =

C. Duration Indices

The duration indices are to describe the length of the inconve-
nient period for HVAC and water heater. (As the severity indices
for clothes dryer and EV are already measured by duration, this
type of indices is not applicable to them.)

1) Duration Indices for HVACs: For HVACs, the duration
index I4 gvac is defined as the longest duration of room tem-
perature violating the pre set comfort level. tvac is the dura-
tion that the room temperature is out of the comfort range, in
minutes.

(10)

2) Duration Indices for Water Heaters: For water heaters,
the duration index I; wg is defined as the longest duration of
hot water temperature violating the pre set comfort level. twy is
the duration that the hot water temperature is out of the comfort
range, in minutes.

Iy wvac = max(tuvac)

(11)

Iy wh = max(twy)

V. CASE STUDY

To study the impact of the multilayer demand response
strategy on load shape, a distribution circuit in the Virginia
Tech Electric Service (VTES) area in Blacksburg, VA, is taken
as a case study.

A. Cast Study Description

A distribution circuit noted as Circuit 9 in the VTES service
area, is chosen as the case study platform as shown in Fig. 6.
There are 34 laterals with 117 transformers serving 780 cus-
tomers. As most consumers served by this circuit are residential,
the circuit is considered to be a residential distribution circuit.

Different EV penetration levels and EV types are taken into
consideration and the consumer comfort indices are calculated.
As an average number of vehicles per household is 1.9 [40], the

estimated total number of vehicles for 780 homes considered
in this case study is 1482. The case studies consider two EV
penetration levels, 50 EVs and 100 EVs, representing 3.3% and
6.6% EV market share respectively.

In this study, it is assumed that the EV fleet is made up of 40%
Chevy Volt, 40% Nissan LEAF, and 20% Tesla Roadster. This
assumption is the same as the example charge profile shown in
Section II. All EVs will charge at the recommended rate as in-
dicated in Table I, i.e., Chevy Volt at 3.3 kW, Nissan LEAF at
3.3 kW, and Tesla Roadster at 9.6 kW. The driving distance
and plug-in time are diversified using the Mont Carlo simula-
tion method and normal probability distribution function, re-
spectively.

B. Demand Response Results

1) Circuit Load Curves w/ and w/o Demand Response: For
this circuit, the load models developed in [24] are used to create
the distribution circuit load profiles using a bottom-up approach.
The results were validated with the actual circuit load profiles.
The original load profile without EV and DR has the summer
peak demand of 1.60 MW and the winter peak demand of 2.60
MW. This study sets the demand limit at 1.6 MW for summer
and 2.6 MW for winter to perform demand response, which will
make the EV penetration transparent. The simulations already
take into account different consumers’ priority and preference
settings at different times of the day in different seasons.

Table II shows the original and new peak loads with two dif-
ferent EV penetration levels.

Figs. 5 and 6 show the 24-h summer and winter load profiles
respectively with and without DR at EV penetration levels of
(2) 50 EVs and (b) 100 EVs.

2) Consumer Comfort Indices: The consumer comfort zone
for difference appliances is described in Table III. These num-
bers are based on typical consumer preference. The comfort
zone may vary by areas and can be redefined according to any
available concrete survey data. The simulation results of the
indices are calculated and presented in Tables IV and V for
summer and winter, respectively. The indices are to measure
the impacts of DR on the consumer’s convenience.

Fig. 7 shows the 24-h summer and winter load profiles of four
load types (HVAC, water heater, clothes dryer, and EV) after the
implementation of the proposed demand response strategy. As
shown in Fig. 7 is the case of 100 EV penetration.

It can be seen from the simulations results that some controls
are performed to all controllable load types. The controls are
mainly to defer the appliance usage from about 18:00 to later.
This demand deferral will maintain the distribution circuit peak
load at the same level as the original peak.

The resulting consumer comfort indices as shown in
Tables IV and V indicate a trend whereby the impact of DR on
consumer comfort levels increase with the higher EV penetra-
tion levels. According to the indices description in Section IV,
the severity indices show situation of the house experiencing
the most severe impact in the whole distribution circuit, the
scale indices show the percentage of houses that get out of the
comfort range due to performing DR and the duration indices
shows the longest DR impact duration in the network. The
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TABLE III
1800 - 8 CONSUMER COMFORT ZONES FOR DIFFERENT APPLIANCES
1600
1400 - | HVAC WH* CD* EV
E 1200 - 1 Comfort <H#2F° <+10F° <30 minutes | <30 minutes
2 1000+ o Zone difference difference within the within the
g 800 - ; Ll from setting | from setting original original
] charging time | charging time
600 k ]
400 - —— Supply Limit of 1.6MW WH™ represents water heater
200 - — Circuit Load Curve without DR CD* represents clothes dryer
0 ) ) ) ) ) ' Circuit Load Curve with DR
0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h) TABLE IV
(a) CONSUMER COMFORT INDICES RESULTS—SUMMER
2000 . T : . T : : : : : HVAC WH* CD* EV
1800
1600 50 EVs Severity 2.75% 15.66% 2.17% 7.69%
o 14007 Scale 0% 5.89% 0% 0%
< 1200} ) ;
S 1000 1 Duration 0 min 22 min - -
©
E 800" y 100 EVs | Severity 4.83% 15.66% 2.54% 6.67%
[a} \ 4
600 k) 4 A 1
I Scale 0.59% 6.68% 0% 0%
400 — Supply Limit of 1.6MW - - -
200 — Circuit Load Curve without DR Duration 3 min 22 min - -
0 . . . . . ‘ Circuit Load Curve with DR
0 2 4 6 8 10 12 14 16 18 20 22 24 ‘W™ represents water heater
Ti'?]:)(h) CD* represents clothes dryer

Fig. 5. Summer load profiles w/ and w/o DR at different EV penetration levels.
(a) Summer load profiles with penetration of 50 EVs. (b) Summer load profiles
with penetration of 100 EVs.
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Fig. 6. Winter load profiles w/ and w/o DR at different EV penetration levels.
(a) Winter load profiles with penetration of 50 EVs. (b) Winter load profiles with
penetration of 100 EVs.

three indices are calculated to show the utilities the likelihood
of receiving complains on DR programs.

VI. CONCLUSIONS

The share of electric vehicles is expected to grow in the U.S.
personal automotive market. A larger level of EV penetration
into electric power systems may result in increased stress condi-
tions in distribution circuits. This paper models EV fleet charge
profiles based on driving distances and battery sizes using a
Monte Carlo method. Three popular types of EVs are taken
into consideration. The simulation shows that while the EV fleet
charging increases the sale of the electric energy, the uncon-
trolled charge profile will inevitably increase the peak demand
of a distribution circuit.

This paper proposes a DR strategy to help the distribution cir-
cuit to accommodate EV penetration. The proposed DR strategy
can provide the utility with unchanged peak demand to avoid
distribution circuit upgrade, while being able to accommodate
EV charging. The proposed DR strategy is also an energy man-
agement tool within a home area network (HAN) that allows
customers to control their own loads based on consumers’ pref-
erence and comfort levels. Since the utility only sends the de-
mand limit to each house and will leave all the household control
decision to the consumer, the proposed DR strategy will respect
the consumer’s own choices and protect their privacy. A distri-
bution circuit in Blacksburg, VA is selected for the simulation
study. The control results show that the proposed DR strategy
can fulfill the task of maintaining the original peak demand with
different EV penetration levels.

Furthermore, consumer comfort indices are defined and cal-
culated to provide a better understanding of the DR impact on
the consumer’s comfort level. It should be noticed that main-
taining the same distribution circuit-level peak load with higher
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Fig. 7. 24-h summer and winter load profiles by appliance types with and without DR at the 100-EV penetration level. (a) 24-h summer load profiles by appliance
types with and without DR; (b) 24-h winter load profiles by appliance types with and without DR.

TABLE V
CONSUMER COMFORT INDICES RESULTS—WINTER
HVAC WH* CDh* EV
50 EVs Severity 2.59% 14.11% | 2.22% | 5.56%
Scale 0% 6.92% 0% 0%
Duration 0 min 15 min - -
100 EVs | Severity 7.44% 1411% | 2.17% | 7.69%
Scale 4.91% 7.13% 0% 0%
Duration 11 min 15 min - -

WH?* represents water heater

CD~ represents clothes dryer

EV penetration levels may negatively impact the consumer’s
convenience, resulting in more complaints. Therefore, utilities
can use the proposed indices to estimate the capability of de-
mand response programs to accommodate EV fleet into a cer-

tain distribution circuit.

As the number of EVs increases, it will be more difficult to
keep the household load under a given demand limit and not
violating the consumer’s comfort level. At that point, utilities
may not be able to rely solely on demand response to shave the

peak demand. When all demand resources are exploited, utilities
can explore other means such as using distributed generation or
equipment upgrade to address high EV penetration scenarios.
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