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a b s t r a c t 

Power disaggregation algorithms are used to decompose building level power consumption data into in- 

dividual equipment level power information. In order to ensure energy efficient operation of complex 

systems, such as commercial buildings, a continuous and detailed energy monitoring system is essential. 

In this paper a novel power disaggregation technique is presented, in which a single set of aggregated 

power usage data of multiple HVACs from a single power meter is disaggregated to identify the opera- 

tions of individual HVAC units. Parameters, including the combined real and reactive power of compres- 

sors and air handlers, are used in addition to the phase currents of both, as well as the true index values 

representing the combination of active compressors at any given time. Four different supervised machine 

learning algorithms – Decision Trees (DT), Discriminant Analysis (DA), Support Vector Machine (SVM) and 

k -Nearest Neighbors ( k -NN) were tested. According to results, the k -Nearest Neighbors model was found 

to be most efficient in solving the problem of aggregated power disaggregation. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Continuous and detailed energy monitoring is essential to en-

ure the energy efficient operation of complex systems, such as

omes and office buildings, and also to ensure economic preser-

ation. This information can also be used locally to analyze the us-

ge and power consumption of devices/appliances. This will pro-

ide information for energy counseling, energy management appli-

ations, and increasing energy awareness of users by providing de-

ailed device-level feedback. While it is expected that the number

f smart appliances will increase significantly in the future, a con-

iderable number of household appliances will be legacy devices,

hich are not able to directly report their operational data regard-

ng time and consumption. Most of reported techniques for appli-

nce’s load monitoring can be classified under two categories: (1)

istributed direct sensing (or submetering); and (2) single-point

ower profile disaggregation. Distributed direct sensing requires

he monitoring of each appliance using submetering sensors (cur-

ent, voltage, power, etc.). While this technique can provide accu-

ate measurements, using a high number of dedicated meters to

onitor these devices will be neither cost nor energy-effective. In

rinciple, it requires a complex and costly power sensor system.

n alternative approach motivated by the increasing deployment of

mart meters and the awareness of promoting energy savings mea-
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ured in the residential sector is the so-called non-intrusive load

onitoring system (NILMS) that provides device level information

hile requiring a relatively simple installation. NILMS monitors the

oltage and the overall electrical current entering the system, and

nfers the contribution of different energy consuming devices by

ooking at the time evolution of the monitored signals. Smart me-

ers can transmit detailed energy consumption information back to

he utility on a more frequent schedule than classical meters. How-

ver, still more detailed information on individual appliance con-

umption is required to direct the attention to actions that carry

igh energy savings. 

There have been a number of state of the art approaches that

ave been taken to solve the problem of power disaggregation. In

he context of data centers [1] , non-intrusive power disaggrega-

ion (NIPD) establishes power mapping functions (PMFs), between

he states of the data center servers and their power consump-

ion. PMFs are used to infer the power consumption of each server

ith the aggregated power of the entire datacenter. Sparse approx-

mations [2] have been tested for load disaggregation of home ap-

liances from aggregate power measurements using sparse data

odels (data dependent dictionaries) learnt from individual appli-

nces. A block sparse approximation was solved using an aggre-

ated power signal to estimate the representational coefficients of

ach appliance. An analysis sparse optimization problem was then

olved using the estimated coefficients, to estimate the power pro-

le features of each appliance. Appliances have also been modeled

y multi-state finite state machines [3] . Each state of an appliance

https://doi.org/10.1016/j.enbuild.2018.03.074
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2018.03.074&domain=pdf
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is described by exactly one vector of power consumptions, mea-

sured at subsequent time instants, rather than a single measure-

ment. 

Electrical signatures [4] based on transients (Root Mean Square

(RMS) Increment, Settle Time, Peak to Trough) and current-voltage

phase shift during steady-state conditions have been used as fea-

tures for the small power load disaggregation. Decision Tree clas-

sification incorporating tree pruning has been used for disaggrega-

tion using the aforementioned features. Discrete events, including

switching ON/OFF of appliances, appliance operational time and

some portion of the raw signal, are considered for achieving load

disaggregation [5] . A method for residential appliances based on

uncorrelated spectral components of an active power consumption

signal [6] is presented. Karhunen Loe ́ve expansion is used to break-

down the active power signal into subspace components (SCs) in

order to construct a unique information rich appliance signature,

used for disaggregation. 

Event detection of appliances based on power edges is also

used in [7] where subtractive clustering is used instead of K-Means

clustering, in this case prior knowledge of the number of devices

is not known. A dynamic fuzzy C-Means clustering algorithm is

used to build appliance signature data based on active and reactive

power in [8] . Two different clustering techniques, i.e., K-Means and

Gaussian Mixture Models (GMM), are used and compared in [9] .

GMM is a probabilistic approach whereas K-Means is not, however

both rely on Expectation Maximization algorithm to iteratively de-

termine cluster centers. 

Using Artificial Neural Networks (ANN) [10] , a low sampling

rate of monitored data was used to detect any change of power

signal that obtained a 1 Hz sampling rate of active power from

the energy meter. Neural networks have been used to disaggregate

residential loads in a point-to-state energy disaggregation model

based on Back Propagation Neural Network algorithm [11] . Deep

learning methods [12] have also been used such as Factored Four-

ay Conditional Restricted Boltzmann Machines (FFW-CRBM) and

Disjunctive Factored Four-Way Conditional Restricted Boltzmann

Machines (DFFW-CRBM). These are able to perform both, classifi-

cation and prediction of different loads. 

A generic algorithm has been used to extract the main power

states of electrical appliances based on iterative K-Means clustering

[13] that is applied on historical plug-level active power data. Sim-

ilar states are merged together and Factorial Hidden Markov Mod-

eling (FHMM) models appliances for power disaggregation pur-

poses, and incorporates the extracted set of appliances states. An-

other approach examines both the modeling of home appliances as

Hidden Markov models (HMMs) and the solving of non-intrusive

load monitoring (NILM) based on segmented integer quadratic

constraint programming (SIQCP) [14] to disaggregate a household

power profile into the appliance level. FHMM in combination with

Viterbi algorithm [15] using initial and final power states of de-

vices and device interactions have also been used to disaggregate

loads. The most probable interaction is calculated using the Viterbi

algorithm to detect active devices. The main features and interac-

tions of the devices as explained in [15] are adaptively estimated in

[16] , resulting in an improved accuracy of active device estimation.

Graph signal processing using features, such as active power, ON

and OFF status, ON time and portion of the raw power waveform,

has been used to classify the loads [17] . The concept of current

waveforms using features of a current wave derived by distributed

wavelet transform (DWT) has been used for disaggregation [18] . 

A semi-supervised shift-invariant weighted non-negative ma-

trix factorization method [19] has been simulated, with auxiliary

feedback that records the ON or OFF status of each appliance. An-

other method is a three-stage process for energy usage analysis,

based on pulse extraction [20] , pulse clustering and classification,

and pulse to appliance association. The smart meter data are de-
omposed into a discrete set of pulses, and each pulse is associ-

ted with the operation of the appliances. Sum-to-k constrained

on-negative matrix factorization (S2K-NMF) has also been used

or disaggregation [21] . By imposing the sum-to-k constraint and

he non-negative constraint, S2K-NMF is able to effectively extract

erceptually meaningful sources from complex mixtures. By per-

orming matrix factorization, activation coefficients for each device

re calculated. After calculating the activation coefficient for each

evice, estimated power signal for each particular device is calcu-

ated. Power signals combined with ultra-wideband (UWB) radar

22] used for occupancy detection has also been used for multiple

oad power disaggregation. Data gathered from UWB detects and

dentifies the movements of person(s) within an indoor environ-

ent. This feature improves accuracy of disaggregation. An unsu-

ervised load disaggregation method for monitoring and supervi-

ion of the load profiles of individual equipment of a HVAC system

as been carried out using features, such as state of compressors,

mpulsion temperature and return temperature [23] . 

There have also been a number of earlier methods of power

isaggregation as well. Current waveforms [24] have been used

s power signatures. A voltage monitoring method is discussed in

25] where voltage variations are mapped to power jumps or drops

aused by different devices. Based on these transients, power is

alculated and matched with the power of connected devices to

ee which are active. Many forms of clustering had also previ-

usly been used for power disaggregation. An unsupervised disag-

regation approach is proposed in [26] where models are created

sing rising and falling power edges, and appliance features are

xtracted from these edges. Air Conditioning (AC) units are dis-

ggregated using edge detection and K-Means clustering in [27] .

ey parameters of AC units are detected, and then used to identify

N and OFF events. Two different methods of edge detection, i.e.,

he Sobel edge detector and Two-step change filter, are compared

n [28] . Once edges have been detected, features are extracted in

he form of real and reactive power surrounding the edges. Appli-

nces are modeled as Gaussian distribution in [29] . Expectation–

aximization (EM) clustering algorithm is used to calculate the

lusters of edges to obtain the number and type of appliances

sed. 

Some of the earlier electrical features which were used to im-

rove performance [30–33] of data segregation for loads. Some of

hese features are Real/Reactive Power, Harmonics, Electromagnetic

nterference (EMI), Current Waveforms, Transient Waveforms, In-

tantaneous Admittance Waveforms, Voltage readings and Eigen-

alues. 

Fourier series models had also been used [34] to calculate

he lighting-plug and power of submeters in a commercial build-

ng from aggregated submetering data. Motif mining techniques

35] had also been used where motifs are referred to primitive

hapes and frequent patterns. Meaning recurring load curves of

lectrical appliances can be considered motifs. Based on motif

tatistics, load curves are reconstructed and matched with ground

ruth data to separate active appliances. 

A probability based approach [36] was also used for disaggre-

ation where the system has probabilities of loads which may be

ctive at a given time. Aggregated power data is then matched

ith probability of device status, e.g., whether they are ON/OFF,

ased on probability maximization. Discrete Time Warping [37] is

nother method that was used for disaggregation instead of using

lustering. It was seen to be more effective than K-Means cluster-

ng. Appliances had previously also been modeled as SISO (Single

nput Single Output) devices [38] and instead of looking for out-

uts, disaggregation is done by looking at inputs to appliances. The

utput is the power consumed by the device and the input is the

evice’s setting when it is ON. 
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There are many methods of power disaggregation mentioned

bove which are applied to aggregated signals of different appli-

nces. However, the problem of disaggregating data from an ag-

regated power signal of multiple identical appliances or devices,

n order to identify which devices are active at a particular mo-

ent in time, has not yet been fully addressed. Power disaggrega-

ion in the context of smart buildings is the process of separating

he power data for a number of devices, which are monitored by

 single power meter. For example, to implement a Demand Re-

ponse (DR) algorithm to control HVAC unit, an energy manage-

ent system would require power consumption data from each

nit. However, it is not practically feasible to use separate meters

o measure the power consumption of each individual HVAC unit.

herefore, data for a number of HVAC units may be collected us-

ng a single meter. This data must then be disaggregated to retrieve

he individual power consumption data for each unit. 

In this paper the performance of different supervised classi-

ers is simulated and compared. These include Decision Trees (DT),

iscriminant Analysis (DA), Support Vector Machine (SVM) and k -

earest Neighbors ( k -NN). Our main contributions in this paper are

s follows: 

1. A novel approach is presented to solve a problem which has

not been addressed fully – to disaggregate the power data

from an aggregated power usage signal, of multiple identical

devices. This will be done in order to identify which devices

are in operation at any given moment in time, allowing the

fine-grained monitoring of the individual devices whose data

has been aggregated together, using only a single power meter.

Therefore, this would significantly reduce the installation and

maintenance costs of the entire system. 

2. Only three components of smart meter data are used to achieve

this objective – real power, reactive power and phase currents. 

3. Using simple machine learning classification algorithms, the

problem of aggregated power disaggregation can be solved with

high accuracy. 

The devices under consideration are five HVAC compressors in-

talled on a particular floor in a commercial building. Real and re-

ctive power, phase currents of each compressor and air handler

nit, along with corresponding index values representing the com-

ination of active compressors, are used to train classifier models.

ach classifier then matches input data points to a particular in-

ex value based on the training data, therefore outputting which

articular compressors are active at any given time instant. By in-

orporating these features it is possible to achieve a high degree of

ccuracy in detecting the device status, i.e. which compressors are

ctive and inactive at any given point in time. 

. Supervised classifiers 

In this section, a brief overview of the different supervised clas-

ifiers, which have been tested for data disaggregation, is given. 

.1. Decision Trees 

Decision Trees (DT) are predictive models, in which tree like

tructures are generated. The branches of a tree represent the dif-

erent features present in the data set, and the leaves represent

he different output classes. The model moves from one branch to

nother by calculating entropy and then information gain to split

lasses based on a set of given features. There are mainly two types

f Decision Trees – models where the outputs consist of a discrete

et of values are called classification trees, whereas models with

ontinuous valued outputs are called regression trees. 
Entropy is defined as: 

J 
 

i =1 

p i lo g 2 p i (1) 

here p i are fractions that add up to 1 and represent the percent-

ge of each class present in the child node that results from a split

n the tree. 

Information Gain = Entropy (parent) – Weighted Sum of En-

ropy (Children) 

G ( T , a ) = H ( T ) − H(T | a ) (2)

Information gain is used to decide which feature to split on at

ach step in building the tree. At each step a split is chosen that

esults in the purest daughter nodes, resulting in a small tree and

ow model complexity. 

.2. Discriminant Analysis 

Discriminant Analysis (DA) is a classification problem where

utput classes are known a priori. New observations are then clas-

ified into one of the known outputs, based on the features that

re present in the observations. It is a score based system, with

ach possible output having a score, generated from the features

resent in a particular observation. This makes DA effective in de-

ermining whether a particular group of features is effective in pre-

icting output classes. 

.3. Support vector machine 

Support vector machines (SVM) are supervised learning mod-

ls that can be used for both classification and regression analysis.

sing training data, a SVM algorithm creates a model that assigns

utput classes to new observations based on input features, mak-

ng it a non-probabilistic binary linear classifier. An SVM model is

ased on the concept of hyperplanes, where the hyperplanes divide

he space into different categories, so that data points of separate

ategories are divided by a clear gap that is as wide as possible.

ata points are then mapped into that same space and predicted

o belong to a category, based on which side of the hyperplane

hey fall. A hyperplane can be defined as, 

f ( x ) = βo + βT x (3) 

here β is known as the weight vector and βo as the bias . 

The optimal hyperplane can be represented in an infinite num-

er of different ways by scaling of β and βo . The chosen represen-

ation is, 

βo + βT x 
∣∣ = 1 (4) 

here x symbolizes the training examples closest to the hyper-

lane. The training examples that are closest to the hyperplane are

alled support vectors. This representation is known as the canon-

cal hyperplane. 

The next step is to compute the distance between a point x and

 hyperplane ( β , βo ). 

istance = 

∣∣βo + βT x 
∣∣

‖ 

β‖ 

(5) 

In the case of a canonical hyperplane, the numerator is equal to

ne and the distance to the support vectors is, 

istanc e support vectors = 

∣∣βo + βT x 
∣∣

‖ 

β‖ 

= 

1 

‖ 

β‖ 

(6) 

M is a margin that is twice the distance to the closest examples,

 = 

2 

‖ 

β‖ 

(7) 
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Fig. 1. Location of the five thermostats on the second floor within the building from 

which the compressors are controlled. 
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Finally, the problem of maximizing M is equivalent to the prob-

lem of minimizing a function L ( β) subject to some constraints. The

constraints model that classifies correctly all the training examples

x i is given below, 

min 

β, βo . 
L ( β) = 

1 

2 

‖ 

β‖ 

2 
subject to y i 

(
βo + βT x i 

)
≥ 1 for all i (8)

Here y i represents each of the labels of the training examples.

This is a problem of Lagrangian optimization that can be solved

using Lagrange multipliers to obtain the weight vector β and the

bias βo of the optimal hyperplane. 

2.4. k -Nearest Neighbors 

The k -Nearest Neighbors ( k -NN) algorithm is a non-parametric

supervised classifier, since the complexity of the model increases

with the size of the training data. An observation is classified

based on its input features in addition to the most common out-

put classes of its neighboring data points. The output class for an

observation is calculated, by taking the average of the outputs of

its k nearest neighbors. 

D = { ( x 1 , y 1 ) , . . . , ( x n , y n ) } (9)

D is the set of training data consisting of objects ( x n ) and their

corresponding classes ( y n ) 

f ( x ) = y k , where k = argmi n i d ( x, x i ) (10)

f ( x ) is the output of the classifier, which computes the mini-

mum difference between an input and objects in the training data

and then assigns the class of that particular object to the output. 

3. Data sets 

3.1. Thermostats and compressors 

Fig. 1 shows the floor plan of the second floor of the commer-

cial building in Alexandria, VA from where the aggregated com-

pressor power signal is collected. The position of each of the ther-

mostats is labeled, each of which is used to control a single com-

pressor. Thermostat 1 is inside an office room whereas thermostat

4 is inside a computer lab. The remaining three thermostats are

placed in hallways on the second floor. It is not economically feasi-

ble to measure the power readings from each individual compres-

sor and so a single power meter is used to measure the aggregated

power consumption of five compressors. 
.2. Training data 

The training data had been collected over a number of months,

pril through September of 2017 from a commercial building in

lexandria, VA. Data was collected at one-minute intervals and

onsists of both compressor and air handler unit data. The train-

ng data is composed of: 

• Real power 

• Reactive power 

• Phase currents 

• Compressor indexes 

The values of real power for the compressors vary from 0 kW

or when all the compressors are OFF, to a maximum of just under

4 kW for when all five compressors are ON, whereas the max-

mum reactive power is about 5 kVar. The combined phase cur-

ents of compressors vary from 0 A to a maximum of nearly 50 A.

he real and reactive powers have similar values when a particu-

ar number of compressors are running, even if the combination of

ompressors are different. Hence it is difficult to distinguish which

nes are actually active and so additional features were tested such

s the phase voltages of both the compressors and air handlers.

owever, the phase voltages did not seem to vary significantly

hen combinations of compressors were changed and so the effect

f phase currents was investigated. The phase currents were sig-

ificantly different for each combination of compressors and were

herefore included as a feature in the models for the process of

ata disaggregation. For example, when two different combinations

f three active compressors are running, both have similar com-

ressor power values – close to 8 kW real power and 2.5 kVar re-

ctive power. However, they have different phase currents varying

y 1 or 2 A in each case. Therefore, when real and reactive power

re taken as the only features, they would not be enough to dis-

inguish between the different indexes. The addition of phase cur-

ents as features, which are significantly different between indexes,

mproves the accuracy of disaggregation. 

Training data was collected by testing the 5 compressors in all

he possible 32 different combinations, using BEMOSS TM (Build-

ng Energy Management Open Source Software) developed by Vir-

inia Tech – Advanced Research Institute for small and medium-

ized commercial buildings. An index was assigned to each pos-

ible combination and was then matched with the corresponding

ower and phase current data which had been recorded by BE-

OSS. 30 min of training data for each index value was taken. The

ist of compressor indexes corresponding to the combination of ac-

ive compressors is given in Table 1 . 

.3. Test data 

The test data consists of the same four features (real power,

eactive power, phase currents and compressor indexes) for both

ompressors and air handlers that were included in the training

ata. However, the difference here is that the true value of com-

ressor indexes is not an input to the model, is only used for

alidation of accuracy – to be compared with the compressor in-

exes that are predicted by the classifier models. The test data was

ollected by running each of the 32 combinations using BEMOSS,

ith each index being tested for 15 min. The testing schedule was

ecorded, and the data was later retrieved from the one-minute in-

erval data recorded by BEMOSS. 
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Table 1 

List of compressor indexes. 

Index Active compressor 

0 All are off

1 1 

2 2 

3 3 

4 4 

5 5 

6 1,2 

7 1,3 

8 1,4 

9 1,5 

10 2,3 

11 2,4 

12 2,5 

13 3,4 

14 3,5 

15 4,5 

16 1,2,3 

17 1,3,4 

18 1,4,5 

19 1,2,4 

20 1,3,5 

21 1,2,5 

22 2,3,4 

23 2,4,5 

24 2,3,5 

25 3,4,5 

26 1,2,3,4 

27 1,3,4,5 

28 1,2,4,5 

29 1,2,3,5 

30 2,3,4,5 

31 1,2,3,4,5 
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Fig. 2. Indexes generated by Decision Trees model plotted against the true index 

value of the compressors. 

Fig. 3. Indexes generated by DA model plotted against the true index value of the 

compressors. 

Fig. 4. Indexes generated by SVM model plotted against the true index value of the 

compressors. 

c  

fi  

m  

t

4

 

e  

h  

d  

d  
. Data analysis 

.1. Compressor models 

The compressor models are trained using real and reactive pow-

rs as well as phase currents of only the compressors, in addition

o the corresponding true values of the compressor indexes. Test

ata for all 32 indexes is collected over a period of 24 h, dur-

ng the month of June 2017 when the temperature was among

he highest during the entire month. Once trained, each of the

our models – Decision Trees, Discriminant Analysis, SVM and k -

N use test data to predict the corresponding compressor indexes.

he predicted compressor indexes, generated sequentially by the

odels for each of possible 32 combinations (starting from 0 to

1) is plotted along with true values of the compressor index at

hose time instances, for comparison purposes. In the figures given

elow, the power consumption is only used as a reference to show

hat power consumption increases as the number of active com-

ressors increases. 

Fig. 2 illustrates the pattern of the Decision Trees line which

oes not perform well at predicting the correct compressor in-

exes. This is represented by rapid changes in gradient and large

eviations from the black true index value line. 

Fig. 3 shows that the line for Discriminant Analysis only has a

ew large rises or drops when compared to the true index value. 

Fig. 4 shows how the SVM model does have a few rises and

rops however the magnitude of these compared to previous clas-

ifiers is less. 

Fig. 5 illustrates the k -NN model which can be seen to most ac-

urately follow the trend of true index value line, performing sig-

ificantly more accurately than the other classifiers. 

Figs. 2 –5 show the pattern of the indexes predicted by the four

ifferent classification models, compared with the trend of the true

ndex value at particular time instants for each of the possible 32
ompressor indexes, ordered sequentially. The objective of these

gures is to be able to visualize the results and determine which

odel is most accurately able to predict the indexes that follow

he trend of the true index value line. 

.2. Combined compressor and air handler models 

The combined models are trained using real and reactive pow-

rs as well as phase currents of both the compressors and air

andlers, and the corresponding true values of the compressor in-

exes. Using this updated test data, the predicted compressor in-

exes from each model are again plotted along with the true com-
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Fig. 5. Indexes generated by k -NN model plotted against the true index value of 

the compressors. 

Fig. 6. Indexes generated by Decision Trees model plotted against the true index 

value of the compressors. 

Fig. 7. Indexes generated by DA model plotted against the true index value of the 

compressors. 

 

 

 

 

 

 

 

 

Fig. 8. Indexes generated by SVM model plotted against the true index value of the 

compressors. 

Fig. 9. Indexes generated by k -NN model plotted against the true index value of 

the compressors. 
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pressor index values at those time instances, for comparison pur-

poses. Once again the power consumption is only used as a refer-

ence to show that power consumption increases as the number of

active compressors increases. 

Fig. 6 illustrates that the pattern of the Decision Trees line re-

mains unchanged even for the combined model, meaning that the

addition of the phase currents as features did not help to improve

the accuracy of the results. 

Fig. 7 shows how Discriminant Analysis performs better with

fewer rises and drops resulting in a line that follows the true index

value line more accurately. 
Fig. 8 illustrates how the accuracy of predicted indexes in-

reases with the use of the SVM classifier with very few large rises

nd drops. 

Fig. 9 shows that the line for k -NN is by far the most accurate.

mall step rises from left to right correspond to accurately predict-

ng the increasing value of the index, as this is consistent with the

ine of true index values. 

Figs. 6–9 illustrate the pattern of the indexes predicted by the

ombined compressor and air handler classification models, plot-

ed against the line of true compressor indexes at given time in-

tances. These figures are again used to select which model yields

he best results, when incorporating the air handler data in addi-

ion to the aggregated compressor data. 

.3. Compressor models throughout a 24-h period 

Each of the four models were tested using only compressor data

ver a period of 24 h during August 4th 2017, when the average

emperature was among the highest for the entire month. This test

as carried out to see if the predicted indexes were consistent

ith the pattern of aggregated real power consumption for the

ompressors. The indexes will not equal the power consumption

alues as they are two different quantities on two different scales.

owever, it is expected to see similar trends in rises and falls for

oth. The true value of the compressor indexes is not known in

his case, as the goal is to predict the indexes given power and

hase current data. The figures showing the indexes generated by

ach model against the real power consumption of the compres-

ors are given below: 
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Fig. 10. Indexes generated by Decision Trees model plotted against the aggregated 

power consumption of the compressors. 

Fig. 11. Indexes generated by DA model plotted against the aggregated power con- 

sumption of the compressors. 

Fig. 12. Indexes generated by SVM model plotted against the aggregated power 

consumption of the compressors. 
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Fig. 13. Indexes generated by k -NN model plotted against the aggregated power 

consumption of the compressors. 

Fig. 14. Indexes generated by Decision Trees model plotted against the aggregated 

power consumption of the compressors and air handlers. 
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Fig. 10 illustrates the pattern of the Decision Trees line which

oes not accurately predict the indexes and does not follow the

attern of real compressor power consumption well. 

Fig. 11 shows how Discriminant Analysis is able to predict in-

exes more accurately but still has a number of errors. 

Fig. 12 illustrates how SVM performs better than the previous

lassifiers and follows the trend of real power consumption more

ccurately. 
Fig. 13 shows that k -NN performs the most accurately among

ll the classifiers at predicting indexes and following the pattern

f real power consumption. 

Figs. 10 –13 show the pattern of the indexes generated by the

our different classifiers against the real power consumption of the

ompressors when they use compressor data only, for the entire

ummer day of August 4th 2017. 

.4. Combined models throughout a 24-h period 

The four classifier models were also tested using both compres-

or and air handler data over the same period of 24 h on August

th 2017. Figures showing the indexes generated by each of the

ombined models when plotted against the aggregated real power

onsumption of the compressors are given below: 

Fig. 14 illustrates the pattern of the Decision Trees line has not

hanged from the line generated by the compressor model, there

s no improvement from the combined model. 

Fig. 15 shows how the Discriminant Analysis model performs

ignificantly better than Decision Trees and also predicts the in-

exes more accurately than the previous compressor DA model. 

Fig. 16 illustrates that the combined SVM model performs only

lightly better than the compressor model, and Fig. 17 shows that

ombined k -NN model is the most accurate model among all at

redicting indexes and following the pattern of real power con-

umption. 
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Fig. 15. Indexes generated by DA model plotted against the aggregated power con- 

sumption of the compressors and air handlers. 

Fig. 16. Indexes generated by SVM model plotted against the aggregated power 

consumption of the compressors and air handlers. 

Fig. 17. Indexes generated by k -NN model plotted against the aggregated power 

consumption of the compressors and air handlers. 

 

 

 

 

 

Table 2 

The accuracy of tested classifiers. 

Model Decision Trees (%) DA (%) SVM (%) k -NN (%) 

Compressor model 60 81 89 96 

Combined model 60 96 90 99 
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Fig. 17 shows that combined k -NN model is the most accurate

model among all at predicting indexes and following the pattern

of real power consumption. 

Figs. 14 –17 illustrate the pattern of the indexes generated by

the four different classifiers against the real power consumption of

the compressors when they use both the compressor data and air
andler data, for a 24-h period during the summer day of August

th 2017. 

. Results and discussion 

Training data for the four supervised classifier models was col-

ected over a period of several months and then used to evaluate

he performance of the models in different scenarios. There were

wo groups of models simulated: (1) the compressor model and (2)

he combined compressor and air handler model. At first each of

he four models – Decision Trees, Discriminant Analysis, SVM and

 -NN were tested to predict all possible 32 indexes consecutively

ver a period of a day, during the month of June 2017. The fig-

res for each of the models were used to visualize the accuracy of

he predicted indexes generated by the classifiers, against the line

f true compressor index values. Going from one classifier model

o the other starting with Decision Trees and eventually reaching

he k -NN model, it can be observed that for both the compressor

nd combined models the accuracy of the models at predicting in-

exes which are consistent with the pattern of the true index val-

es, steadily increases. The same trend in accuracy can been seen

hen the models are applied to a given day using the same train-

ng data as before. Table 2 shows the comparison in average accu-

acy between the compressor models and combined models, when

redicting each of the 32 indexes consecutively. 

The average accuracy of the Decision Trees classifier is the least

ith no change in accuracy between the compressor models and

ombined models. All the other classifiers perform significantly

etter when they use the combined compressor and air handler

ata compared to just the compressor data. A reason for inaccura-

ies maybe that air handler units sometimes continue to stay ac-

ive for a few minutes, even after the compressors have turned

FF. Therefore, this does hamper the accuracy of the combined

odels by a small amount. After testing each of the indexes, with

he exception of the k -NN models, the other classifiers each have

rouble accurately predicting the following set of five of indexes 9,

6, 17, 23, 28. The accuracy of each of these indexes is less than

0%, which may be due to the limitations of each of the classifiers.

ndex 9 has compressor power and phase current values which are

ery close the values for those of index 7. Therefore, classifiers are

nable to accurately distinguish between the two indexes. In the

ase of indexes 16 and 17, combined phase current values for the

ctive compressors are almost identical to that of index 21, and

re also close to the values for index 18 and 22, leading to errors

n predicted indexes. The compressor and air handler data for in-

ex 23 is also almost identical to index 22, and bares some sim-

larity with the compressor power values of index 27, which also

esults in errors in predicted index. Finally, for index 28, the com-

ressor data is comparable to that of index 26 and the air handler

ata for index 28 also follows a similar trend to that of index 31.

ue to the similarity in data with other indexes, the classifiers are

nable to accurately predict the correct index. The results show

hat among all of the classifier models, the Decision Trees clas-

ifier performs least accurately. There is also no improvement in

he accuracy of this classifier between the compressor model and

he combined model. Decision Trees are based on the concept of

ntropy and Information Gain to split different classes (indexes)

ased on features. In the case of power disaggregation of compres-

ors, many of the features for the compressors are very close to
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Table 3 

Active compressor time. 

Compressor % of time active 

1 32.7 

2 33.2 

3 52.9 

4 26.6 

5 36.1 
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ach other. Therefore, the Decision Trees classifier is unable to split

ndexes efficiently, as many of the indexes have similar and almost

dentical features. Discriminant Analysis uses the concept of scores

hich is generated based on the different features that are present.

his method results in greater accuracy than calculating probabil-

ty and has the second highest accuracy for the combined model.

VM is based on the concept of hyperplanes which divide a set

f points into different categories based on the spacing between

hem. Depending on which side of a hyperplane the point falls

ithin, an index is assigned. This method has quite high and com-

arable accuracies for both the compressor and combined models.

ome errors are present as it can sometimes be difficult to separate

oints which are closely associated with each other. Finally, the k -

N models have the greatest accuracy with a peak of 96% for the

ompressor model and 99% for the combined model. k -NN is based

n the concept of nearest neighbors. This means that the index

alue predicted by the model is based on the set of features that

re present in a particular data point, in addition to the indexes

hat have been assigned to neighboring data points with similar

eatures. Therefore, in this study this method seems to work the

est because of some indexes having some similar features. As the

 -NN model has the greatest accuracy when predicting each of the

2 compressor indexes, the k -NN model is used as a reference to

ompare the performance of the other three classifiers when ap-

lied to the 24-h test data of August 4th 2017. For the combined

odels, the indexes predicted by the SVM classifier are accurate

o within 78% of the indexes predicted by the k -NN model, the DA

lassifier is accurate to within 75% and the Decision Trees classifier

s accurate to within 62%. This follows the same pattern of accu-

acy as the results for when the models are used to predict each

f the 32 indexes individually, further validating the results. 

Results from the combined k -NN model for the 24-h period of

ugust 4th 2017, show that the third compressor was the most ac-

ive, as it was in operation for 52.9% of the time. This is consis-

ent with our expectations due to the fact that third thermostat

s placed in a long hallway on the second floor, where significant

eat is generated due to the movement of people. Hence the ther-

ostat is more active in order to maintain the set point temper-

ture. Table 3 shows the predicted combined k -NN results of how

ong each of the compressors were active. 

This pattern of results is also true for when each of the other

lassifiers is used to predict the indexes for a 24-h period, with

he k -NN classifier following the trend of power consumption most

ccurately and further validating the results. 

. Conclusion 

Power disaggregation algorithms decompose building level

ower data into device level power information, enabling the mon-

toring of individual devices and ensuring efficient energy usage. In

his paper a novel power disaggregation technique was presented,

n which a single set of aggregated power usage data of multiple

VACs from a single power meter, was disaggregated to identify

he state of activity of individual HVAC compressors. This was done

y using parameters, such as the one-minute interval real and re-

ctive power of the compressors and air handlers, in addition to
hase currents of both. Four different supervised machine learning

lgorithms – Decision Trees (DT), Discriminant Analysis (DA), Sup-

ort Vector Machine (SVM) and k -Nearest Neighbors ( k -NN) were

ested, using just compressor data and then also using a combina-

ion of compressor and air handler data. The results show that in

he majority of models, the combined compressor and air handler

odel is able to predict indexes more accurately than the com-

ressor model. Based on this, the k -NN algorithm was found to

e the most efficient model in solving the problem of aggregated

ower disaggregation. 

Some limitations of our work presented in this paper include- 

1. Loads need to constantly be monitored and have their data

recorded by an Energy Management System (EMS). 

2. Some combinations of active loads have almost identical power

and current readings which leads to a small error in identifying

which devices are active. 

3. At times air handler units continue to operate for a few min-

utes, even after the compressors have turned OFF. This gives

rise to small errors. 

4. When testing the models on a random given day, accuracy of

the models cannot be measured, as the true index values are

not known beforehand. 

The method of power disaggregation that has been explained in

his paper can be used by researchers, to solve the problem of dis-

ggregation/classification of similar or identical devices other than

VAC compressors. This is important as the usage characteristics of

 number of devices which may be running simultaneously can be

istinguished, even when data from these devices is only available

n an aggregated form. 
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