
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Robust short-term electrical load forecasting framework for commercial
buildings using deep recurrent neural networks

Gopal Chitaliaa,b, Manisa Pipattanasomporna,c,⁎, Vishal Gargb, Saifur Rahmanc

a Smart Grid Research Unit, Department of Electrical Engineering, Chulalongkorn University, 10330, Thailand
b Center for IT in Building Science, IIIT-Hyderabad, 500032, India
c Bradley Department of Electrical and Computer Engineering, Advanced Research Institute, Virginia Tech, Arlington, VA 22203, USA

H I G H L I G H T S

• A comprehensive framework for short-term electrical load forecasting is presented.

• RNN with attention reduced forecasting errors by 20–45% from the state of the art.

• Robust against different building types, locations, weather and load uncertainties.

• One month of data is enough to give satisfactory results.

• Clustering and 15-min data give better results in hour-ahead load forecasting.
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A B S T R A C T

This paper presents a robust short-term electrical load forecasting framework that can capture variations in
building operation, regardless of building type and location. Nine different hybrids of recurrent neural networks
and clustering are explored. The test cases involve five commercial buildings of five different building types, i.e.,
academic, research laboratory, office, school and grocery store, located at five different locations in Bangkok-
Thailand, Hyderabad-India, Virginia-USA, New York-USA, and Massachusetts-USA. Load forecasting results in-
dicate that the deep learning algorithms implemented in this paper deliver 20–45% improvement in load
forecasting performance as compared to the current state-of-the-art results for both hour-ahead and 24-ahead
load forecasting. With respect to sensitivity analysis, it is found that: (i) the use of hybrid deep learning algo-
rithms can take as less as one month of data to deliver satisfactory hour-ahead load prediction, (ii) similar to the
clustering technique, 15-min resolution data, if available, delivers 30% improvement in hour-ahead load fore-
casting, and (iii) the formulated methods are found to be robust against weather forecasting errors. Lastly, the
forecasting results across all five buildings validate the robustness of the proposed deep learning framework for
the short-term building-level electrical load forecasting tasks.

1. Introduction

According to the U.S. Energy Information Administration (EIA), the
U.S. buildings sector consumed nearly 75% of the total electricity sales
in 2018 [1]. With rapid population and economic growth, electricity
used in the building sectors is projected to be doubled by 2050 from the
2018 consumption [2]. The buildings sector generates one-third of
greenhouse gas, two-thirds of halocarbon and about one-third of black-
carbon emissions [3]. Accurate building-level load forecasting can help
deliver efficient building operations, thus mitigating such adverse

effects. In addition, authors in [4] show that a 1% increase in load
forecasting error can result in about £10 million increase in annual
operating costs.

Typically, load forecasting horizons are either: (i) short-term, from
one hour to one week, (ii) medium-term, from one week to a few
months, or (iii) long-term, from months to years [5]. Short-term load
forecasting (STLF) [6–8] is now possible thanks to widespread avail-
ability of Advanced Metering Infrastructure (AMI) and Internet of
Things (IoT) devices that enable collection of electrical load and
weather data at a more granular level [18,19]. STLF benefits real-time
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control of building energy systems [9,10], including demand response
[11], demand management [12,13], charging/discharging energy sto-
rage units [14], and energy transactions [15,16]. STLF is also a key
element for generation dispatch and demand curtailments in a micro-
grid [17].

A large amount of building-level data has now become available,
which has paved way for data-driven approaches [20], i.e., statistical/
machine learning related approaches instead of physics-based ap-
proaches [21,22]. Previous studies have employed linear regression
[23,24], non-linear regression [21], non-parametric regression [25,26],
multi-layered perceptron [27], Auto Regressive Integrated Moving
Average (ARIMA) [28], Extreme Machine Learning [29], Support
Vector Regression (SVR) [30–34], fuzzy models [35], wavelet transform
[36], random forests [37], Artificial Neural Network (ANN) [38,39] and
hybrid methods for predicting building energy consumption [40]. Au-
thors in [28] showcased different ARIMA- and ANN-based models and
exponential smoothing methods for load forecasting. Authors in [41]
proposed a technique that uses both multiple linear regression and a
seasonal ARIMA model to forecast cooling and electric loads. Such
traditional approaches, however, suffer from relatively irregular
building usage patterns caused by irregular occupant behaviors [42],
and high non-linearity in building dynamics/thermal physics added
with uncertainties on weather [43–45].

The Recent development of deep learning methods, such as Deep
Neural Network (DNN), including Convolution Neural Network (CNN),
Recurrent Neural Network (RNN), has had a great impact in the fields of
computer vision, Natural Language Processing (NLP) and speech re-
cognition. DNN can model a complex function and can extract a variety
of features from a large dataset. However, there has been limited use of
deep learning methods for building-level load forecasting, and only
recently, it is being applied. Authors in [46] proposed an RNN se-
quence-to-sequence model, i.e., an encoder-decoder architecture, to
predict medium-to-long-term loads. Authors in [47] proposed RNN and
CNN models to forecast commercial building loads hour-ahead and day-
ahead. Authors in [48] used DNN/RNN methods for load forecasting,
including Long Short Term Memory (LSTM) and LSTM encoder-decoder
models. Authors in [49] proposed an RNN model for load forecasting
with the time horizons of 24, 48 h, 7 days, and 30 days. In [50], the
authors proposed an ANN model based on two back propagation al-
gorithms for district level load forecasting. Authors in [51] exploited
the potential of deep learning in unsupervised learning focusing on
perceptron DNN for feature extraction and indicating a significant im-
provement in prediction accuracy. Authors in [52] proposed a recurrent
inception CNN for load forecasting. A pooling based deep RNN for
predicting household load was discussed in [53]. LSTM-based multi-
input multi-output based window approach was discussed in [54].

The above studies mostly focus on RNN and CNN models and de-
monstrate that deep learning methods can deliver much better load
forecasting accuracy than those achieved by traditional methods. Other
deep learning models have not been much explored for load forecast-
ings, such as attention model, BiLSTM and ConvLSTM. The attention
model has been proven to be very useful and given state-of-the-art re-
sults in NLP [55]. The attention model accounts for all the past hidden
states, while all the methods proposed in the literature use only the
preceding hidden state. Hence, it is impossible to achieve a satisfactory
forecasting accuracy with an incorrectly generated hidden state vector
[52]. To address this problem, this paper investigates the use of the
attention model with RNN, which accounts for all hidden states.
Overall, this paper explores nine different deep learning models, in-
cluding LSTM, LSTM with attention, BiLSTM, BiLSTM with attention,
CNN + LSTM, CNN + BiLSTM, ConvLSTM, Conv BiLSTM, and En-
coder-Decoder, for hour-ahead and 24-h ahead load forecasting. Also,
unsupervised clustering with k-means based on historical load,
weather, and schedule parameters is explored for hour-ahead load
forecasting. To the best of the authors’ knowledge, the deep learning
algorithms that combine LSTM/BiLSTM models with attention or

convolution mechanisms, i.e., LSTM with attention, BiLSTM with at-
tention, ConvLSTM and ConvBiLSTM, are explored for the first time in
building-level load forecasting.

The other limitations identified in the literature is the fact that most
of the load forecasting methods were typically applied to buildings in
the same geographic region, and of similar building functions. Hence,
the methods proposed in the literature may not work well if different
building types located in different geographic regions are used. In this
paper, five buildings of different functions located in three countries,
Thailand, India, and USA, are used to showcase the versatility of dif-
ferent deep learning models for building-level load forecasting.

Furthermore, as one of the major pain points identified in the lit-
erature was of that load forecasting at the building level requires a
considerable amount of data [56], i.e., at least one year to get a good
prediction, this study also explores the minimum length of historical
data that can achieve acceptable forecasting accuracy.

Also, as peak load varies greatly among buildings due to different
building types, sizes, locations, occupant behaviors and type of energy
usage, researchers face challenges in having a fair comparison of fore-
casting errors among buildings using traditional error metrics, like Root
Mean Square Error (RMSE) and Mean Absolute Percentage Error
(MAPE). To the best of authors’ knowledge, Root Mean Square
Logarithmic Error (RMSLE) is used for the first time in the load fore-
casting problem as the error metric to allow fair comparison among
buildings.

Overall, the major contributions and key findings from this work are
summarized as follows:

• The deep learning methods formulated in this paper deliver RMSLE
of 0.03 to 0.3 for all five buildings, and demonstrates 20–35% im-
provement in hour-ahead load forecasting accuracy, and 20–45%
improvement in 24-h ahead forecasting accuracy as compared to the
most recent state-of-the-art results [47].

• This paper provides a detailed discussion on the attention model,
feature selection and hyperparameter fine-tuning, which are the
main contributors to a major improvement in load forecasting ac-
curacy.

• The load forecasting models presented here have been tested against
buildings of different peak loads (ranging from 80 kW to 700 kW),
functions (i.e., academic, research laboratory, office, school and
grocery store) and weather conditions in three different countries
(i.e., Thailand, India, and USA).

• The formulated deep learning models can deliver satisfactory load
forecasting results even with as little as one month of data.

• Higher granularity data, i.e., 15-min intervals, could provide better
forecasting accuracy as compared to one-hour intervals.

• The use of RMSLE provides deep insight that higher forecasting
accuracy can be expected when dealing with buildings that do not
have much load variations throughout a day.

This paper is organized as follows. Section 2 describes the research
outline and all forecasting algorithms explored in this paper. Section
2.6 summarizes evaluation metrics used. Section 3 describes the
building datasets and preprocessing methods. Section 4 discusses hour-
ahead load forecasting, including input feature sets, hyperparameter
fine-tuning and sensitivity analysis. Section 5 discusses algorithms for
24-h ahead load forecasting and model performance. All of the analysis
above is discussed in the context of one building in Bangkok. Then,
Section 6 discusses load forecasting for all other buildings and com-
pares the results with the state of the art.

2. Framework and methodology for load forecasting

The research framework carried out in this paper is depicted in
Fig. 1. It comprises the following processes: (i) data pre-processing; (ii)
feature set selection; (iii) algorithm formulation; (iv) hyperparameter
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fine-tuning; and (v) building-level load forecasting at 1-h and 24-h
ahead; and (vi) model evaluation.

2.1. Data pre-processing

After the building-level data are obtained, the data pre-processing

involves filling in the missing values, detecting outliers and normalizing
the data.

2.2. Feature set selection

The next step is to select relevant feature sets for a prediction model

Fig. 1. Flowchart of proposed methodology for Load forecasting framework.
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to be developed. Because redundant information is thrown out, feature
set selection helps reduce the over-fitting problem, and helps in di-
mensionality reduction as only the relevant features are taken as model
inputs. This in turn reduces the computation load of the model. In this
study, the input matrix X comprises weather related parameters (xW ),
scheduled related parameters (xS) and historical loads (x L), which are
the three different kinds of input features vector. y being the output
vector which refers to the predicted load. Pearson correlation is used to
determine the most appropriate/relevant features for all the three
kinds. Ten different feature sets are explored and tested with selected
algorithms, namely, LSTM, LSTM with attention, BiLSTM, BiLSTM with
attention. The feature set which gives the best results is then selected.

2.3. Deep learning algorithms

Nine different RNN/CNN and their hybrid algorithms are for-
mulated for load forecasting, as described below. The focus is placed on
formulating the LSTM/BiLSTM with attention and ConvLSTM/
ConvBiLSTM algorithms, which are explored for the first time in
building-level load forecasting.

2.3.1. LSTM
LSTM is a special kind of RNN. The main idea behind LSTM is to

have better control over gradient flow, overcoming the RNN’s problem
of vanishing gradient [57], and to ensure better preservation of long-
term dependencies by filtering out redundant or misleading informa-
tion. As shown in Fig. 2(a), LSTM does this with the help of memory
cell, input (it), output (ot) and forget gates ( ft). Each of the LSTM units
works in tandem, which is unlike vanilla RNN that has a single hidden
layer. LSTM functions are expressed in Eq. (1):

= +−f σ W h x b( ·[ , ] )t f t t f1 (1a)

= +−i σ W h x b( ·[ , ] )t i t t i1 (1b)

= +
∼

−C W h x btanh( ·[ , ] )t c t t C1 (1c)

= ∗ + ∗
∼

−C f C i Ct t t t t1 (1d)

= +−o σ W h x b( ·[ , ] )t o t t o1 (1e)

= ∗h o Ctanh( )t t t (1f)

Where, W W W, ,f i c and Wo are weight and b b b, ,f i c and bo are bias
parameter vectors of LSTM, which are learned through back-propaga-
tion. Each sigmoid function (σ) outputs values in the range of −0 1;0
means completely removing the information; and 1 means completely
retaining the information. xt is the current input at time t which in-
tegrates historical loads (xt

L), weather (xt
W ) & schedule parameter (xt

S)
and −ht 1 is the previous hidden layer output. The output vector

=y g h( )t t is the predicted load value at time t, where g can be any
activation function (e.g., sigmoid, softmax, tanh, relu). The forget gate
( ft) in Eq. (1a) decides which information to retain or throw away. With
the help of the input gate (it) in Eq. (1b) and the candidate memory cell
(∼Ct) in Eq. (1c), the decision is made to identify which values to update
or to store in the cell state. The old cell state ( −Ct 1) is then updated to
the new cell state (Ct) Eq. (1d). Using Eqs. (1e) and (1f), the output is
determined. This process then continues to repeat.

2.3.2. BiLSTM (or Bidirectional LSTM)
A typical architecture of BiLSTM consists of two LSTM components,

forward LSTM (
⎯→⎯
ht ) and backward LSTM (

←⎯⎯
ht ) as shown in Fig. 2(b).

These two components are concatenated to form the output, as yt =

σ(W · [
⎯→⎯ ←⎯⎯
h h x, ,t t t] + b). The main intuition behind providing backward

component is to provide the network a pathway so that it can look into
future values as well. This might help the network in learning some
dependencies of the load forecasting problem, which is a time series
problem with periodic dependencies.

2.3.3. Encoder-decoder model
A typical architecture of an encoder-decoder sequence-to-sequence

model is shown in Fig. 2(c). The encoder model comprises several RNN
units that encode the input sequence into a fixed length context vector

Fig. 2. (a) LSTM unit with forget gate ( ft), input gate (it) and output gate (Ot); (b) BiLSTM architecture with one forward and one backward LSTM layer; (c) Encoder-
decoder architecture with context vector (C) out of the last hidden state is used; and (d) RNN with attention with context vector (C) a weighted combination of input
states.
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(C). The hidden states (hi) are calculated based on the input vector (xt)
and its previous hidden state ( −ht 1) as ht = f( −x h,t t 1). Where,f is any
RNN function (e.g., LSTM or Gated recurrent units (GRU)). The context
vector is the final hidden state output from the encoder model, where

=C hT . It acts as an initial hidden layer for the decoder, aiming to
capture the information from the input, allowing the decoder to make
accurate predictions. The decoder model decodes the context vector re-
presentation into another sequence. It is again a stack of several re-
current units, each accepting a hidden state from the previous unit.
Here, ht = f( −C h, t 1) and output yt = g(ht). Where,f can be any RNN
function, and g can be any activation function (e.g., sigmoid, softmax,
and tanh). This model can learn patterns over a timescale and has been
very successful in predicting a target sequence with all the information
retained. However, as the length of input increases, it becomes very
difficult for the context vector to retain previous information. The at-
tention mechanism has been developed to solve this problem.

2.3.4. LSTM/BiLSTM with attention
The attention mechanism was designed to remember long source

input. While in the encoder-decoder model, the context vector out of
the last hidden state is used, the attention model creates a context
vector, which is a weighted combination of the input states. Hence, the
context vector has access to the entire input sequence, thus getting rid
of the problem of forgetting. The attention technically only pays at-
tention to those inputs that are critical for the next step. An architecture
of bidirectional RNN + attention is shown in Fig. 2(d). Note: Any RNN,
like LSTM or BiLSTM, can be combined with the attention model.

Let’s assume a scoring function � � �× ↦f : m m which computes
relevance between its input vectors and assigns weight to each of them.
Then, the context vector (ct) is a weighted sum of hidden states

= … −H h h h{ , , , }t1 2 1 , representing the relevant information for the cur-
rent time step. This is shown in Eq. (2).

∑=
=

−

c α ht
i

t

i i
1

1

(2a)

∑
=

=

−
α

f h h

f h h

exp( ( , ))

exp( ( , ))
i

i t

j

t

j t
1

1

(2b)

=
⎯ →⎯⎯⎯

= …⊤ ⊤
← ⊤

h h h i n[ ; ] , 1, ,i i i (2c)

The context vector then is integrated with previous hidden state unit
−st 1 and previous target output −yt 1 to predict the current hidden state st,

shown in Eq. (3).

= − −s g s y c( , , )i i i i1 1 (3)

2.3.5. CNN + LSTM, CNN + BiLSTM
Convolutional neural network (CNN) has been proven effective in

time-series problems [58]. This paper explores CNN + LSTM and
CNN + BiLSTM, a hybrid model that combines salient features of both.
While CNN can extract and learn local/spatial features as well as re-
ducing the number of parameters, LSTM/BiLSTM can capture variation
in long/short term dependencies. Fig. 3 shows how this model works.

2.3.6. ConvLSTM, ConvBiLSTM
LSTM, whose gates perform convolutions, is ConvLSTM. That is, the

convolutional reading of input is directly built into each unit of LSTM.

Though developed for extracting underlying spatial features in 2-
Dimensional input, they can be adopted for 1-D input problems.
Architecture of ConvLSTM is depicted in Fig. 4.

Equations for ConvLSTM are summarized in Eq. (4), where ‘*’ de-
notes the convolution operator and ‘∘’ denotes the Hadamard product.

C= + ∘ +− −f σ W h x W b( * [ , ] )t f t t cf t f1 1 (4a)

C= + ∘ +− −i σ W h x W b( * [ , ] )t i t t ci t i1 1 (4b)

C C= ∘ + ∘ +− −f i W h x btanh( * [ , ] )t t t t c t t c1 1 (4c)

C= + ∘ +−o σ W h x W b( * [ , ] )t o t t co t o1 (4d)

C= ∘h o tanh( )t t t (4e)

Any RNN architecture can be used with convolution, such as BiLSTM.

2.4. Hyperparameter fine-tuning

The performance of an algorithm is highly dependent on the choice
of hyperparameters. This is especially true for the case of RNN, which
has a more complex architecture than other traditional models and can
achieve better and consistent performance with the right hyperpara-
meters. Doing a grid search on each possible combination of hy-
perparameters is infeasible as it requires much time in evaluating un-
promising areas of search space. Therefore, instead of tuning all the
hyperparameters at once, a more informed decision can be made by
selecting a set of hyperparameters to tune, and based on the informa-
tion gathered, the best hyperparameters are fixed after every run. A
generic method to fine-tune hyperparameters of all algorithms is de-
scribed below.

• Step 0: Select the initial hyperparameter set.

• Step 1: Select the best learning rate

• Step 2: Select the best epoch and batch size.

• Step 3: Select the best optimizer.

• Step 4: Select the best activation function.

• Step 5: Select the best number of layers and neurons.

2.5. Load Forecasting: 1-h and 24-h ahead

All algorithms discussed in Section 2.3 have been used for 1-h ahead
load forecasting in this paper.

For 24-h ahead forecasting, on the other hand, two approaches have
been formulated: recursive and direct. In the recursive method, an
iterative approach was adopted for 24-h ahead load forecasting using
one-hour interval data. See Fig. 5.

In the first iteration, historical values of the past 24 h, consisting of
building load, weather and scheduled related parameters at times

−t t, 1 ⋯ −t 23, are fed to the forecasting models as inputs. The models
then predict the building load value at the next time step ( +t 1). Note
that here t is every one hour. At the second iteration, the predicted load
value ( +t 1) is then used, together with the 24-h historical values
( −t t, 1 ⋯ −t 22) to form the new input for building load prediction atFig. 3. CNN + LSTM/BiLSTM architecture.

Fig. 4. ConvLSTM architecture.
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the next time step ( +t 2). This recursive process continues until all the
next day building load values are predicted, i.e., + +t t1, 2 ⋯ +t 24.

In the direct approach, on the other hand, given the past day input
values, i.e, −t t, 1 ⋯ −t 23 consisting of scheduled parameters,
weather parameter and historical loads, the loads for the next 24 h are
predicted all at once, i.e., + +t t1, 2 ⋯ +t 24.

2.6. Evaluation Metrics

This section discusses the evaluation metrics used for determining
the accuracy of load forecasting.

2.6.1. Metrics for Hour-ahead Forecasting
Root mean squared error (RMSE), mean absolute percentage error

(MAPE) and, coefficient of variance (CV) are used as the evaluation
metrics. RMSE, MAPE and CV were calculated using Eq. 5(a)-(c), re-
spectively.

∑
=

−
=

P A

N
RMSE

( )
i

N

i i
1

2

(5a)

∑
= ×=

−

N
MAPE 100i

N
P A

A
1

i i
i

(5b)

= ×

∑ −

−
=

A
CV 100

P A

N

( )

1
i

N
i i

1

2

(5c)

Where, Pi and Ai represented predicted and actual load values. N is the
total number of observations. A is the mean of the actual load values.

2.6.2. Metrics for 24-h ahead Forecasting
Unlike in the hour-ahead prediction, which gives a scalar output,

the output of 24-h ahead prediction is a vector comprising 24 load
values. Therefore, error metrics are calculated for each day and aver-
aged into one final value, using Eq. 5(a)-(c) with N = 24, which is the
length of output vectors.

2.6.3. Metrics for comparison among buildings
Since every building has different peak load as shown in Table 1,

RMSE is not suitable to compare forecasting errors among buildings as
it will penalise more for buildings with higher loads. So to have a fair
assessment of results among buildings, log of predictions and actual
values are taken. Hence, Root Mean Square Logarithmic Error (RMSLE)
is used, as shown in Eq. (6).

∑= + − +
=

n
P ARMSLE 1 (log( 1) log( 1))

i

n

i i
1

2

(6)

Note: RMSLE is the metric chosen for ASHRAE Great Energy Predictor
III competition [59].

3. Dataset Description

This section discusses the datasets for load forecasting and data pre-
processing.

3.1. Building datasets

In this paper, load forecasting was performed on five commercial
buildings: one in Bangkok, Thailand; one in Hyderabad, India; and
three in the USA (Virginia, New York, and Massachusetts). These
buildings are of different types, i.e., academic, research laboratory,
office, school and grocery store, ranging in size from 840 m2 to 7,500
m2. Their peak electrical loads range from 74 kW to 646 kW. The
buildings’ physical and electrical characteristics, together with outdoor
temperature ranges, are summarized in Table 1.

Table 1 also summarizes the average load and the average off-peak
(nighttime) load for each building to demonstrate the degree of dif-
ference in peak, average and off-peak loads. The building in Bangkok
has the lowest average off-peak load, as this building has the lowest
nighttime consumption. On the other hand, the average off-peak load is
very close to its average load for the building in Massachusetts, USA.
This is intuitive as this building is a grocery store, and there is a re-
frigeration load that needs to operate 24/7.

The electrical load data of the building in Bangkok were collected
from Chulalongkorn University’s Building Energy Management System
(CU-BEMS) [60]. Electrical load data of the building in India were
collected from [61]. Electrical load data of the building in Virginia,
USA, were gathered from its smart meter, while those of the buildings
in New York and Massachusetts, USA were collected from public En-
erNOC Commercial building data set [62]. Except for the building in
Bangkok, which has one-minute interval data, data of other buildings
are available at one-hour intervals. Weather parameters including
outdoor temperature ( °O C, ), humidity (RH, %), global solar radiation
(GSR, W/m2), air pressure (A inch, ) and wind speed (WS mph, ) were
collected from Weather Underground [63].

3.2. Data Pre-processing

The weather data obtained from Weather Underground are at irre-
gular intervals, i.e., several values per hour. Hence, they were averaged
at one-hour intervals to obtain hourly data. Then, missing weather-re-
lated variables were filled with the combination of interpolation, as
well as through the data from the timeanddate website [64].

For the building in Bangkok of which the data are in one-minute
intervals, building load data were averaged at every one-hour intervals.
For all buildings, missing electrical load values were filled with neural
network with weather parameters (O RH,t t and GSRt) and schedule
variables (hour of day (Hi, 1–24) and day of week (Wi , 1–7) as input
features, and Lt being the output.

All data were normalized and divided into 80–10-10 for training,
validation, and testing.

4. Hour-ahead forecasting

This section discusses feature set selection, hyperparameter fine-
tuning, ensemble learning-based clustering, forecasting results, and
sensitivity analysis. All are in the context of hour-ahead load fore-
casting.

Fig. 5. Iterative process for 24-h ahead load prediction.
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4.1. Feature set selection

To select the most relevant weather features, Pearson correlation (ρ)
was determined between building load (L) and weather parameters (O,
RH, GSR, WS, A). The Pearson correlation coefficients between loads
and weather parameters for all five buildings are listed in Table 2. Note
that not all weather parameters are available at all building locations. It
can be seen that O is highly correlated with building load (kW) at all
locations. RH are somewhat correlated with building loads for the first
three buildings. GSR appears to be as highly correlated to building loads
as O for the buildings in Bangkok and Hyderabad. However, WS and A
have low correlation with building loads.

In addition, historical building loads (L i,i = − − …t t1, 2 ) are
known to be highly correlated with the future building loads. Hence,
any combination of historical load values can be taken as features for
load forecasting. The schedule-related variables, consisting of: hour of
the day (H, 1–24), day of the week (W, 1–7), and month number (M,
1–12), should be explored since they can capture repeating patterns in
time-series problems. Thus, to identify the best input feature sets, which
can provide the best load forecasting results, this study explored 10
different combinations of historical loads, weather parameters and
scheduled related variables as different feature sets (FS1,…, FS10), as
summarized in Table 3.

Fig. 6 summarizes RMSE, MAPE, and CV for the building in
Bangkok, when these 10 feature sets were used as the input features for
load forecasting based on the following four algorithms: LSTM, LSTM
with attention, BiLSTM and BiLSTM with attention. As shown, FS FS,3 9

and FS10 yield the best comparable results. Here, the hyperparameters
initially taken are summarized in Table 4.

As evident from Pearson correlation (Table 2), O and GSR have
higher correlation with load as compared to that of RH with load.
Hence, feature sets with RH t as a parameter, i.e., FS5 and FS6 do not
perform better as they tend to overfit the model. Similarly, adding M t
as a feature in FS4 tends to overfit and does not help improve the model
performance. When schedule parameters are not used as inputs, i.e.,
FS FS,1 2, and FS7, the model performances are not as good as those
when they are used. This shows the importance of the schedule para-
meters, on which building loads are dependent. When comparing
FS FS,8 9 and FS10, using both Ht and Wt yield better results than using
only one of them, as both help in classifying the building operation in
different aspects. Wt gives information about weekdays and weekends,
whereas Ht provides information about daytime and nighttime.

Table 1
Building load and weather data set characteristics.

Building characteristics Electrical load Weather

No. Location Building Area Peak load Avg. load Avg. off-peak Min/max temp.
type (m2) (kW) (kW) load (kW) (°C)

Bldg 1 Bangkok, Thailand Academic 2,700 104.3 19.0 7.9 16.1/37.4
Bldg 2 Hyderabad, India Research lab 840 78.7 27.5 12.5 12.6/39.4
Bldg 3 Virginia, USA Office 2,300 74.3 26.8 21.9 −10.6/37.8
Bldg 4 New York, USA School 7,500 381.3 109.8 71.8 −10.6/36.7
Bldg 5 Massachusetts, USA Grocery store 5,100 646.2 396.5 334.2 −14.4/35.6

Table 2
Pearson correlation coefficients between load and weather parameters of all
buildings.

Bldg 1 Bldg 2 Bldg 3 Bldg 4 Bldg 5

O 0.50 0.57 0.74 0.51 0.76
RH −0.36 −0.35 −0.26 −0.07 −0.10
GSR 0.56 0.46 – – –
WS – – −0.02 −0.04 0.02
A −0.13 – 0 0 0

Table 3
Different feature sets (here t is every one hour).

No. Input features

FS1 −Lt 1
FS2 −L O,t t1
FS3 −L O H W, , ,t t t t1
FS4 −L O H W M, , , ,t t t t t1
FS5 −L O H W RH GSR, , , , ,t t t t t t1
FS6 −L O H W RH GSR, , , , ,t t t t t t1 ,

− − − − − −L O H W RH GSR, , , , ,t t t t t t2 1 1 1 1 1
FS7 −L O GSR, ,t t t1
FS8 −L O GSR W, , ,t t t t1
FS9 −L O GSR H, , ,t t t t1
FS10 −L O H W GSR, , , ,t t t t t1

Fig. 6. (a) RMSE, (b) MAPE and (c) CV for different FSS for the building in
Bangkok.

Table 4
Hyperparameters initially taken for feature set selection.

Learning rate 0.001 Optimizer Adam

Batch size 50 Layers 2
Epoch 300 Neurons 10, 5

Activation function Sigmoid
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Even though FS FS,3 9 and FS10 give comparable forecasting results,
FS3,consisting of −L O H W, , ,t t t t1 , was selected as the best feature set
moving forward. This is because FS3 relies on only outdoor temperature
data, which are widely available in all locations, and it has the less
number of features, hence making it computationally less heavy.

4.2. Fine-tuning hyperparameters

This study used the initial hyperparameters shown in Table 4. The
learning rates, different combinations of epoch and batch sizes, opti-
mizers, activation functions, and different combinations of layers and
number of neurons, explored in this study, are summarized in Fig. 7.

The figure also highlights the hyperparameters that gave the best
result for the LSTM model, which are: the learning rate of 0.005; the
epoch and batch size of 400 and 24, respectively; Adam optimizer;
Sigmoid activation function; number of layers of 2 with 20 and 10
neurons on each layer respectively. The procedure above was followed
to fine-tune all nine algorithms for each dataset. Then, these algorithms
were used in ensemble learning-based clustering, discussed in the next
section.

4.3. Ensemble learning-based clustering

In this study Euclidean distance was used as a similarity metric.
Elbow method was used to determine the optimal number of clusters k.
Using the building in Bangkok as an example, the relationship between
the number of clusters and Within-Cluster Sum of Squares (WCSS) in-
dicates that the optimal number of clusters is four. However, since load
data are limited to 8760 values in a year or 8784 in a leap year, dividing
them into four clusters would mean fewer data available in each cluster
to train on. This would affect the prediction performance. Hence, the
number of clusters (k) of two and three were chosen to experiment.
Different combinations of input features, including historical load
( −Lt 1), O H,t t and Wt , were experimented to cluster the data as shown in
Table 5. It is important to note that clustering was done using historical
load at time −t 1 as the load at time t is unknown and is the forecasting
output.

For the two clusters, as Euclidean distance could not differentiate
the periodicity of hours in a day (0–23), the hours were shifted from
0–7 to 24–31 to group low-load hours together. After doing the k-means
on CS1 for two clusters, the plot is shown in Fig. 8(a). Notice K-means
automatically separates the data into the low-load (nighttime) and
high-load (daytime) groups. For three clusters in Fig. 8(b), shifting
hours would not be required since the clustering process automatically
classifies two low-load clusters and one high-load cluster.

4.4. Model performance: hour-ahead forecasting

Using the input feature set FS3, all nine algorithms discussed in
Section 2 were used to perform hour-ahead load forecasting on the
building in Bangkok. The forecasting errors (RMSE, MAPE, and CV) of
all models before and after fine-tuning their parameters are summar-
ized in Table 6. The results indicate the overall 4–12% improvement in
model performance, showing the importance of fine-tuning hy-
perparameters. It can be seen that all hybrid RNN algorithms gave
comparable results for the Bangkok building with BiLSTM performing
the best (RMSE of 2.89, MAPE of 25.33, and CV of 19.92).

All the nine algorithms with their hyperparameters fine-tuned were
also run on all clustering feature sets ( −CS1 4) for two and three clusters.
The best case results with ensemble for each clustering set are sum-
marized in Table 7.

As shown, the best results with the help of an ensemble is CS1 for
two clusters. In CS1, BiLSTM with attention and LSTM with attention
perform the best for low-load and high-load clusters, respectively,
hence ensembled to produce the one final load forecasting model. It is
also observed that the results for two clusters are better than those for

Fig. 7. Steps to fine tune hyperparameters with the best hyperparameter set for
LSTM highlighted.

Table 5
Feature sets for clustering.

Clustering Sets Clustering Inputs

CS1 −L H,t t1
CS2 −L O,t t1
CS3 −L O H, ,t t t1
CS4 −L O H W, , ,t t t t1

Fig. 8. (a) Two cluster plot; and (b) three cluster plot of Hour vs Load for CS1

feature set (BKK building).

Table 6
Model performance before and after tuning the hyperparameters: hour-ahead
load forecasting (BKK building).

Before/after hyperparameter tuning

Algorithm RMSE MAPE CV

LSTM 3.28/2.91 31.0/25.05 22.63/20.06
LSTM w/attention 3.23/2.93 34.66/24.76 22.33/20.20

BiLSTM 3.07/2.89 27.81/25.33 21.22/19.92
BiLSTM w/attention 3.16/2.96 30.20/26.77 21.82/20.47

CNN + LSTM 3.28/3.01 32.35/27.92 22.65/20.79
CNN + BiLSTM 3.05/2.94 27.51/27.17 21.08/20.26

ConvLSTM 3.28/3.03 31.03/28.69 22.63/20.88
ConvBiLSTM 3.21/2.94 31.42/28.21 22.14/20.33

Encoder-Decoder 3.28/2.99 31.04/26.84 22.63/20.62
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three clusters. This is because of the small amount of dataset available
for three clusters. Table 7 also reveals a significant improvement in
results with clustering as compared to without clustering, shown in
Table 6. RMSE comes down to 2.50, representing the reduction in error
of about 13.5%. MAPE comes down to 20.17, or an error reduction of
about 20.4%. And, CV comes down 17.13, which indicates a reduction
of about 14%.

The plot for actual vs. predicted loads for all algorithms, together
with outdoor temperature, is shown in Fig. 9 for one week of the test
dataset. It is evident that the algorithms are able to detect daily and
weekly variations, i.e., low nighttime and weekend loads. Also, the
reason for higher MAPE and CV is due to very low load values
(0–10 kW) at nights and weekends, and hence it penalizes more.

4.5. Sensitivity analysis

This section investigates the impact of different lengths of the da-
taset, higher resolution data, weather forecasting errors and seasonal
change on load forecasting accuracy.

4.5.1. Impact of different lengths of datasets
In most previous studies, the amount of historical data required for

hour-ahead load forecasting is typically at least a year. This study ex-
plores the minimum amount of historical data required for building-
level load forecasting that can result in comparable prediction accuracy
to the use of 12 months of historical data. The following dataset lengths
were explored: one, two, three, four and six months, and compared with
the 12-month length of data. Each dataset was divided into 90
(training)- 10 (validation)-seven days (testing). To ensure a fair com-
parison, the test dataset was kept the same for all cases. The seven-day
test dataset was chosen to be Sunday to Saturday, during the second last
week of December before the holiday started. All the nine algorithms
were tested, and results are shown in Table 8.

As shown, it is quite apparent that generally, the longer the his-
torical data available for training, the better the load forecasting ac-
curacy would be. With 12 months of historical data, the best RMSE is
2.95 for LSTM with attention. The best RMSE increases to 3.14 (LSTM
with attention, 6.4% increase), 3.25 (LSTM with attention, 10.15%
increase), 3.26 (LSTM with attention and CNN + BiLSTM, 10.5% in-
crease), 3.22 (BiLSTM with attention, 9.2% increase) and 3.28 (BiLSTM
with attention, 11.2% increase) when the dataset lengths of six, four,
three, two and one months were used, respectively. From the results, it
is observed that having six months of historical data performs reason-
ably well as compared to having 12-month historical data. With one
month of data, forecasting errors (RMSE) increase by no more than
11%. This implies that one month of data collection is deemed to be
sufficient for building-level load forecasting using the formulated deep
learning method(s).

4.5.2. Impact of higher resolution data
In most of the studies, load forecasting is usually performed at one-

hour intervals. Since CU-BEMS datasets are available at one-minute
intervals, it is possible to explore the impact of higher resolution data
on the hour-ahead building-level load forecasting. This study explores
the accuracy of hour-ahead building-level load forecasting using 15-min
interval data as compared to one-hour interval data.

An iterative approach was adopted in this study to predict the next
hour building load using 15-min interval data. In the first iteration,
historical values in the past one hour, shown in Table 9, consisting of
building load, weather and scheduled related parameters at times

− − −t t t t, 1, 2, 3, are fed to the forecasting model which predicts the
building load value at the next time step ( +t 1). Note that here t is

Table 7
Clustering Results.

Two Clusters Three Clusters

RMSE MAPE CV RMSE MAPE CV

CS1 2.50 20.17 17.13 2.74 23.58 20.87
CS2 2.77 23.90 19.45 2.95 27.49 20.85
CS3 2.57 20.22 17.50 2.77 22.83 20.66
CS4 2.79 24.23 20.00 2.82 23.73 20.61

Fig. 9. Actual vs predicted load plot: hour-ahead load forecasting (BKK building).

Table 8
Model performance results for different length of datasets.

Length of dataset (months)

Algorithm One Two Three Four Six Twelve

LSTM 3.37 3.40 3.31 3.41 3.38 3.04
LSTM with attention 3.37 3.48 3.26 3.25 3.14 2.95

BiLSTM 3.31 3.29 3.44 3.84 3.16 3.23
BiLSTM with attention 3.28 3.22 3.44 3.40 3.26 3.00

CNN + LSTM 3.45 3.28 3.41 3.39 3.34 3.12
CNN + BiLSTM 3.61 3.23 3.26 3.29 3.40 3.41

ConvLSTM 3.58 3.40 3.56 3.32 3.26 3.16
ConvBiLSTM 3.40 3.32 3.52 3.26 3.38 3.18

Encoder-Decoder 3.35 3.54 3.29 3.50 3.40 3.01
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every 15 min.
At the second iteration, the predicted load value at time ( +t 1),

together with historical one-hour values ( − −t t t, 1, 2), are used to
form the new input for building load prediction at next time step
( +t 2). This recursive process continues until all the next hour building
load value are predicted, i.e., + + +t t t1, 2, 3 and +t 4. These 15-min
next hour building loads (in kWh) are then combined by simply sum-
ming them up to obtain the next hour building load (also in kWh).

The load forecasting accuracy indices (RMSE, MAPE, and CV) using
15-min data resolution are shown in Table 10. Since LSTM, LSTM with
attention, BiLSTM, and BiLSTM with attention perform better than
other models as shown in Table 6, only these models are selected for
hour-ahead forecasting using 15-min interval data.

It can be seen that there was a significant improvement in load
forecasting accuracy when 15-min data resolution was used as com-
pared to one-hour resolution data. The table indicates that the fore-
casting performance has improved, and is comparable to that of clus-
tering in Table 7.

4.5.3. Impact of errors in weather forecast
In most studies, the weather parameters used for load forecasting

are assumed to be 100% accurate. Although weather forecasting ser-
vices can give very accurate outdoor temperature prediction, a typical
error of 5–15% of predicted next-hour temperature can be expected.
Hence, noises were introduced in the weather data using Gaussian
distribution with the mean of the actual temperature, and three stan-
dard deviations (3SD) of 5%, 10%, and 15%. The load forecasting re-
sults after introducing noises in predicted outdoor temperature are
summarized in Table 11.

It can be seen that RMSE increases from 2.89 to 2.91 (LSTM with
attention, 0.7% increase), 2.98 (LSTM with attention, 3.1% increase)
and 2.95 (LSTM with attention, 2.1% increase) for 5%, 10% and 15%
weather forecast errors, respectively.

4.5.4. Impact of seasonal change
In most studies, the length of the dataset is at least a year and is

divided into training-validation-testing with the ratio of 80–10-10 (or
similar). Hence testing was typically done only the last 10% of the
dataset, which is usually the month of December. This study also ex-
plores the impact of seasonal change on load forecasting accuracy.

In Bangkok, usually the Summer season is from March to around the
end of June. Rainy season starts around the end of June to around the
end of October, and then Winter season starts. In this study, four
months of Summer (March-June) and four months of Rainy season
(July-October) were explored. Both datasets were divided into 90%
training, 10% validation and last week for testing. The last week of
June and the last week of October were selected as the testing dataset,
as both weeks represent transitional seasonal change from Summer to
Rainy and Rainy to Winter respectively. All the nine algorithms were
tested, and load forecasting accuracy results are shown in Table 12.

To ensure fair comparison, the results were compared using the case
of equal dataset length of four months. As can be seen from Table 8 and
Table 12 the RMSE increases from 3.25 to 3.38 (LSTM, 4% increase)
during the transition from Summer to Rainy season, and decreases from
3.25 to 3.13 (CNN + BiLSTM, 3.7% decrease) during the transition
from Rainy to Winter season.

Note: In this study, winter seasonal change (i.e. from November-
February) could not be explored as it is a year-long dataset, hence no
data of January, February of next year is available.

5. 24-h ahead Forecasting

As mentioned in Section 4.5.2, LSTM, LSTM with attention, BiLSTM,
and BiLSTM with attention performs better than other models. Hence,
they are selected for 24-h ahead forecasting. Table 13 summarizes re-
sults for 24-h ahead load forecasting for the Bangkok building.

Two algorithms were tested: recursive and direct. As shown, the
recursive 24-h forecasting yields better forecasting accuracy overall
with LSTM with attention performing the best.

The plot for actual vs. predicted loads with the direct and recursive
forecasting methods, together with outdoor temperature, is shown in
Fig. 10 for one week of the test dataset. As expected, the 24-h fore-
casting results have somewhat higher errors than the results of hour-
ahead forecasting.

Table 9
Feature set

FS − − − − −L O H W L O H W, , , , , , ,t t t t t t t t1 2 1 1 1

− − − − − − − −L O H W L O H W, , , , , , ,t t t t t t t t3 2 2 2 4 3 3 3

Note: Here t is every 15 min.

Table 10
Model performance results at 15 min interval dataset.

Algorithm RMSE MAPE CV

LSTM 2.54 20.96 17.66
LSTM with attention 2.47 19.22 17.18

BiLSTM 2.64 19.38 18.33
BiLSTM with attention 2.64 18.16 18.34

Table 11
RMSE with weather forecasting errors.

Weather Forecasting Errors

Algorithm 5% 10% 15%

LSTM 2.94 3.11 3.12
LSTM with attention 2.91 2.98 2.95

BiLSTM 2.99 3.00 3.16
BiLSTM with attention 3.01 3.03 3.12

CNN + LSTM 3.08 3.14 3.17
CNN + BiLSTM 3.09 3.31 3.24

ConvLSTM 3.00 3.11 3.24
ConvBiLSTM 3.21 3.21 3.38

Encoder-Decoder 2.98 3.11 3.26

Table 12
Model performance on seasonal change.

RMSE

Algorithm Summer Rainy

LSTM 3.38 3.18
LSTM with attention 3.42 3.33

BiLSTM 3.45 3.29
BiLSTM with attention 3.50 3.30

CNN + LSTM 3.63 3.16
CNN + BiLSTM 3.39 3.13
Conv2D + LSTM 3.57 3.27
Conv2D + BiLSTM 3.53 3.19
Encoder-Decoder 3.51 3.59

Table 13
Model performance: 24-h ahead forecasting (BKK building).

Direct/recursive 24-h ahead forecasting

Algorithm RMSE MAPE CV

LSTM 6.24/5.30 64.90/49.61 56.11/48.60
LSTM with attention 6.35/5.19 74.51/47.70 60.02/46.23

BiLSTM 5.70/5.39 62.63/49.32 51.56/48.09
BiLSTM with attention 6.71/6.82 73.77/69.17 67.05/62.06
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6. Load forecasting for other buildings and comparison with the
state-of-the-art

After forecasting on the building in Bangkok, the algorithms de-
scribed above were tested on four other buildings located in Hyderabad
(India), Virginia (USA), New York (USA), and Massachusetts (USA) for
both hour-ahead and 24-h ahead forecasting. This was to evaluate the
robustness of the models against different weather patterns, building
types, building operations, and building locations. Error evaluation
metrics, including RMSE, MAPE, and CV, for both hour-ahead and 24-h
ahead are summarized in Table 14 for these buildings. Note that, for
hour-ahead forecasting, all nine algorithms were run. As RNN algo-
rithms (i.e., LSTM, LSTM with attention, BiLSTM, BiLSTM with atten-
tion) perform better in all buildings as compared to the rest of the al-
gorithms, only these four RNN algorithms were used for 24-h ahead
forecasting.

6.1. India building

Using the algorithms described in this paper, BiLSTM performs the
best with an RMSE of 3.25, MAPE of 10.97, and CV of 13.59. The RMSE
results are comparable to that of the Bangkok building because these
two buildings have similar peak loads (78 kW vs. 104 kW). The results
for clustering are not better than non-clustering because the building is
always active during weekends, and its consumption patterns during
the nighttime periods are consistent throughout the year, which is
unlike the load profiles of Bangkok building. See Fig. 11(a) vs. Fig. 9.
Hence, this fact explains its lower MAPE than that of the Bangkok
building.

6.2. Three U.S. Buildings

To enable fair RMSE/MAP/CV comparison with the state-of-the-art
results, this paper used the datasets from the same three U.S. buildings

Fig. 10. Actual vs predicted load plot recursive and direct approach for the building in Bangkok: 24-h ahead forecasting.

Table 14
Model performance: all other buildings and comparison with the state-of-the-art results.

Bldg 2. Hyderabad, India Bldg 3. Virginia, USA Bldg 4. New York, USA Bldg 5. Massachusetts, USA
(Peak 78.7 kW) (Peak 74.3 kW) (Peak 381.3 kW) (Peak 646.2 kW)

RMSE MAPE CV RMSE MAPE CV RMSE MAPE CV RMSE MAPE CV

hour-ahead forecasting

State-of-the-art [47] – – – – 8.28 10.92 – 5.79 7.26 – 2.31 2.84
LSTM 3.31 11.78 13.83 1.69 5.78 7.77 5.33 3.97 5.63 10.42 1.99 2.80

LSTM with attention 3.38 12.51 14.11 1.71 5.83 7.89 5.80 4.01 6.12 10.22 1.87 2.75
BiLSTM 3.25 10.97 13.59 1.66 5.59 7.66 5.52 3.98 5.83 10.38 1.89 2.79

BiLSTM with attention 3.44 12.40 14.36 1.58 5.35 7.29 5.42 3.95 5.73 10.05 1.87 2.70
CNN + LSTM 3.89 15.62 16.22 1.67 6.05 7.70 5.57 4.35 5.88 10.79 2.18 2.90
CNN + BiLSTM 3.54 13.40 14.76 1.70 6.06 7.84 5.94 4.66 6.27 10.24 1.94 2.76
Conv2D + LSTM 3.45 13.43 14.42 1.75 6.13 8.07 5.66 4.36 5.98 10.42 2.10 2.80
Conv2D + BiLSTM 3.68 12.74 15.34 1.75 5.88 8.06 5.75 4.37 6.07 10.55 2.12 2.84
Encoder-Decoder 3.43 12.86 14.30 1.73 6.13 7.98 5.47 3.99 5.77 10.84 2.08 2.92

Clustering 3.44 13.53 20.44 1.54 5.39 7.05 4.94 3.97 5.40 9.67 1.79 2.61

24-h ahead forecasting

State-of-the-art [47] – – – 4.25 – – 13.45 – – 14.35 – –
LSTM 5.03 22.37 23.21 3.46 11.37 15.90 8.02 6.59 8.59 11.27 2.25 3.09

LSTM with attention 5.43 29.23 24.55 3.30 11.64 15.16 7.21 5.96 7.87 14.78 3.42 4.06
BiLSTM 5.55 22.78 25.66 3.40 11.86 15.66 8.46 7.14 9.37 12.60 2.67 3.45

BiLSTM with attention 5.08 23.23 23.08 3.44 13.89 17.46 15.52 10.98 15.79 12.75 2.49 3.49
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studied in [47].
For hour-ahead forecasting, with the forecasting methods used in

this paper, the forecasting errors for all three U.S. buildings exhibit up
to 35% improvement over the state-of-the-art results.

• The building in Virginia, USA: BiLSTM with attention performs the
best with an RMSE of 1.58, MAPE of 5.35, and CV of 7.29. This is
equivalent to 35.4% and 33.2% reduction in MAPE and CV errors
respectively from the state-of-the-art results.

• The building in New York, USA: LSTM performs the best with an

Fig. 11. Actual vs predicted loads–hour-ahead forecasting–for four buildings in: (a) Hyderabad, India; (b) Virginia, USA; (c) New York, USA and (d) Massachusetts,
USA.
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RMSE of 5.33, MAPE of 3.97, and CV of 5.63. This is equivalent to
31.4% and 22.5% reduction in MAPE and CV errors respectively,
from the state-of-the-art results.

• The building in Massachusetts, USA: BiLSTM with attention per-
forms the best with an RMSE of 10.05, MAPE of 1.87, and CV of

2.70. This is equivalent to 19.0% and 4.9% reduction in MAPE and
CV errors respectively, from the state-of-the-art results.

• The clustering method again further improves forecasting accuracy
for all U.S. buildings than the non-clustering results.

Fig. 12. Actual vs predicted loads–24-h ahead forecasting–for four buildings in: (a) Hyderabad, India; (b) Virginia, USA; (c) New York, USA and (d) Massachusetts,
USA.
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Notice that while the improvement of over 20–35% is achieved
when applying the presented forecasting methods on the buildings in
Virginia and New York, the building in Massachusetts has slightly less
improvement. The reason for this can be from the fact that the deep
learning family used in this paper can capture daily and weekly patterns
in building operation well. Hence, better results are observed for the
buildings in Virginia and New York that exhibit such variations. On the
other hand, for the building in Massachusetts, which is a grocery store
that operates seven days a week, and its refrigeration system also op-
erates 24 h a day. Hence, the current state of the art approach [47]
already performs well.

For 24-h ahead forecasting, again, the forecasting errors for all three
U.S. buildings exhibit up to 45% improvement using the forecasting
methods presented in this paper over the state of the art.

• The building in Virginia, USA: LSTM with attention performs the
best with an RMSE of 3.3, MAPE of 11.64, and CV of 15.16. This is
equivalent to 22.35% reduction in RMSE error from the state-of-the-
art results.

• The building in New York, USA: LSTM with attention performs the
best with an RMSE of 7.21, MAPE of 5.96, and CV of 7.87. This is
equivalent to 46.4% reduction in RMSE error from the state-of-the-
art results.

• The building in Massachusetts, USA: LSTM performs the best with an
RMSE of 11.27, MAPE of 2.25, and CV of 3.09. This is equivalent to
21.5% reduction in RMSE error from the state-of-the-art results.

The plots for actual vs predicted loads for the remaining four
buildings are depicted in Figs. 11 and 12, for hour-ahead and 24-h
ahead forecasting, respectively.

6.3. Comparison among Buildings using RMSLE

As mentioned in Section 2.6.3, this paper uses RMSLE to allow fair
comparison of forecasting errors among buildings of different peak
loads. See Table 15.

As shown, the RMLSE results reveal an interesting insight. It can be
seen that the building with the highest RMSLE is the one in Bangkok,
Thailand. This building has the highest difference in peak and off-peak
loads. The building with the lowest RMSLE is the building in
Massachusetts, USA. This building has the lowest difference in peak and
off-peak load. This implies that better forecasting accuracy can be ex-
pected for buildings that do not have much variations in loads
throughout a day.

7. Conclusion

This work focuses on exploring short-term electrical load

forecasting methods that are robust against variations in building type,
building operation, i.e., day/night, seasonal patterns, weekdays/
weekends and holidays, seasonal change, as well as building locations
that result in changes in the outdoor environment. In this study, input
feature sets and input clustering sets have been carefully selected and
models’ hyperparameters have been thoroughly fine-tuned so that the
resulting model performances are optimal. Research findings indicate
that the ensemble technique with unsupervised k-mean clustering de-
livers the least load forecasting errors as variations in building loads
(i.e., weekdays/weekends, day/night) are automatically clustered into
groups, and the best models can be determined for load forecasting in
each cluster. The result indicates that the load forecasting techniques
explored in this paper provide up to 45% improvement in load fore-
casting performance, as compared to the state-of-the-art methods.
Attention model delivers the best result in most of the cases. The deep
algorithms have been tested on five different buildings and results in-
dicate that satisfactory forecasting accuracy is achieved. Due to sa-
tisfactory forecasting results of the initial set of five buildings, it is
expected that the developed method can perform well across a variety
of buildings and locations.

Though better accuracy is achieved with higher resolution dataset,
it comes at the cost of computing power and time. Hence, there will
always be a trade off between computation power and accuracy. Future
work will be to take the method presented herein as the core model of
an online load forecasting platform that allows others to call for load
forecasting services. Online learning will also be developed where this
load forecasting service can connect to a building energy management
system and the forecasting model can automatically update its para-
meters as real-time building loads are read. The implementation of deep
neural networks for probabilistic short-term load forecasting is also a
candidate for future investigation.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

References

[1] U.S. Energy Information Administration, Electricity explained: use of electricity,
April 2019. <https://www.eia.gov/energyexplained/electricity/use-of-electricity.
php>, last accessed on 11/20/19.

[2] U.S. Energy Information Administration, Electricity explained: Today in energy,
September 2019. <https://www.eia.gov/todayinenergy/detail.php?id=41433>,
last accessed on 11/20/19.

[3] Urge-Vorsatz D, Cabeza LF, Serrano S, Barreneche C, Petrichenko K. Heating and
cooling energy trends and drivers in buildings. Renew Sustain Energy Rev
2015;41:85–98.

[4] Bunn D, Farmer ED. Comparative models for electrical load forecasting; January
1985.

[5] Mocanu E, Nguyen PH, Gibescu M, Kling WL. Deep learning for estimating building
energy consumption. Sustain Energy, Grids Networks 2016;6:91–9.

[6] Hong T. Short term electric load forecasting., Ph.D. Dissertation; September 2010.
<https://repository.lib.ncsu.edu/bitstream/handle/1840.16/6457/etd.pdf>, last
accessed on 11/20/19.

[7] Friedrich L, Afshari A. Short-term forecasting of the Abu Dhabi electricity load using
multiple weather variables. Energy Proc 2015;75:3014–26.

[8] Ravadanegh SA, Jahanyari N, Amini A, Taghizadeghan N. Smart distribution grid
multistage expansion planning under load forecasting uncertainty. IET Gener
Transm Distrib 2016;10:1136–44.

[9] Collotta M, Pau G. An innovative approach for forecasting of energy requirements to
improve a smart home management system based on able. IEEE Trans Green
Commun Network February 2017; 1:112–120.

[10] Sehar F, Pipattanasomporn M, Rahman S. An energy management model to study
energy and peak power savings from pv and storage in demand responsive build-
ings. Appl Energy 2018;173:406–17.

[11] Behl M, Smarra F, Mangharam R. Dr-advisor: A data-driven demand response re-
commender system. Appl Energy 2016;170:30–46.

[12] Sehar F, Pipattanasomporn M, Rahman S. Demand management to mitigate impacts
of plug-in electric vehicle fast charge in buildings with renewables. Energy
2017;120:651–2.

[13] Pipattanasomporn M, Kuzlu M, Rahman S. An algorithm for intelligent home energy

Table 15
RMSLE results for different buildings.

Bldg 1 Bldg 2 Bldg 3 Bldg 4 Bldg 5

Hour-ahead Load Forecasting

LSTM 0.23 0.17 0.07 0.05 0.03
LSTM with attention 0.21 0.17 0.07 0.05 0.03

BiLSTM 0.22 0.17 0.07 0.05 0.03
BiLSTM with attention 0.20 0.17 0.07 0.05 0.03

Clustering 0.19 0.17 0.065 0.05 0.03

24hour-ahead Load Forecasting

LSTM 0.31 0.26 0.14 0.08 0.04
LSTM with attention 0.32 0.31 0.17 0.11 0.04

BiLSTM 0.30 0.23 0.15 0.08 0.04
BiLSTM with attention 0.54 0.25 0.15 0.14 0.03

G. Chitalia, et al. Applied Energy 278 (2020) 115410

14

https://www.eia.gov/energyexplained/electricity/use-of-electricity.php
https://www.eia.gov/energyexplained/electricity/use-of-electricity.php
https://www.eia.gov/todayinenergy/detail.php?id=41433
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0015
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0015
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0015
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0025
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0025
https://repository.lib.ncsu.edu/bitstream/handle/1840.16/6457/etd.pdf
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0035
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0035
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0040
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0040
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0040
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0050
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0050
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0050
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0055
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0055
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0060
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0060
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0060


management and demand response analysis. Smart Grid, IEEE Trans. on
2012;3(4):2166–2173.

[14] Sehar F, Pipattanasomporn M, Rahman S. Integrated automation for optimal de-
mand management in commercial buildings considering occupant comfort. Sustain
Cities Soc 2017;28:16–29.

[15] Mashhour E, Moghaddas-Tafreshi S. Integration of distributed energy resources into
low voltage grid: A market-based multiperiod optimization model. Electric Power
Syst Res 2010;80(4):473–80.

[16] Lin J, Pipattanasomporn M, Rahman S. Comparative analysis of auction mechan-
isms and bidding strategies for p2p solar transactive energy markets. Appl Energy
2019;255.

[17] Chaouachi A, Kamel RM, Andoulsi R, Nagasaka K. Multiobjective intelligent energy
management for a microgrid. IEEE Trans Industr Electron 2012;60(4):1688–99.

[18] Heimgaertner F, Hettich S, Kohlbacher O, Menth M. Scaling home automation to
public buildings: A distributed multiuser setup for openhab 2. In: 2017 Global
Internet of Things Summit (GIoTS); June 2017.

[19] Zhang X, Adhikari R, Pipattanasomporn M, Kuzlu M, Rahman S. Deploying iot
devices to make buildings smart: Performance evaluation and deployment experi-
ence. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT); December
2016.

[20] Ahmad T, Chen H, Guo Y, Wang J. A comprehensive overview on the data driven
and large scale based approaches for forecasting of building energy demand: A
review. Energy Build 2018;165:301–20.

[21] Foucquier A, Robert S, Suard F, Stphan L, Jay A. State of the art in building mod-
elling and energy performances prediction: A review. Renew Sustain Energy Rev
2013;23:272–88.

[22] Zhao Hx, Magouls F. A review on the prediction of building energy consumption.
Renew Sustain Energy Rev 2012;16:6:3586–3592.

[23] Amber KP, Aslam MW, Hussain SK. Electricity consumption forecasting models for
administration buildings of the uk higher education sector. Energy Build
2015;123:127–36.

[24] Dudek G. Pattern-based local linear regression models for short-term load fore-
casting. Electric Power Syst Res 2016;130:139–47.

[25] Charytoniuk W, Chen MS, Van Olinda P. Nonparametric regression based short-
term load forecasting. IEEE Trans Power Syst 1998;13(3):725–30.

[26] Song K, Baek Y, Hong D, Jang G. Short-term load forecasting for the holidays using
fuzzy linear regression method. IEEE Trans Power Syst 2005;20(1):96–101.

[27] Robinson C, Hubbs J, Dilkina B, Zhang W, Guhathakurta S, Brown MA, et al.
Machine learning approaches for estimating commercial building energy con-
sumption. Appl Energy 2017;208:889–904.

[28] Kim Y, Son H, Kim S. Short term electricity load forecasting for institutional
buildings. Energy Reports 2019;5:1270–80.

[29] Zhang R, Dong ZY, Xu Y, Meng K, Wong KP. Short-term load forecasting of aus-
tralian national electricity market by an ensemble model of extreme learning ma-
chine. IET Gener, Transmiss Distrib 2013;7(4):391–7.

[30] Ceperic E, Ceperic V, Baric A. A strategy for short-term load forecasting by support
vector regression machines. IEEE Trans Power Syst 2013;28(4):4356–64.

[31] Chen Y, Tan H. Short-term prediction of electric demand in building sector via
hybrid support vector regression. Appl Energy 2017;204:1363–74.

[32] Jain RK, Smith KM, Culligan PJ, Taylor JE. Forecasting energy consumption of
multi-family residential buildings using support vector regression: Investigating the
impact of temporal and spatial monitoring granularity on performance accuracy.
Appl Energy 2014;123:168–78.

[33] Fan C, Xiao F, Wang S. Development of prediction models for next-day building
energy consumption and peak power demand using data mining techniques. Appl
Energy 2017;127:1–10.

[34] Chen Y, Xu P, Chu Y, Li W, Wu Y, Ni L, et al. Short-term electrical load forecasting
using the support vector regression (svr) model to calculate the demand response
baseline for office buildings. Appl Energy 2017;195:659–670.

[35] Rejc M, Pantos M. Short-term transmission-loss forecast for the slovenian trans-
mission power system based on a fuzzy-logic decision approach. IEEE Trans Power
Syst 2011;26(3):1511–21.

[36] Sudheer G, Suseelatha A. Short term load forecasting using wavelet transform
combined with holt-winters and weighted nearest neighbor models. Int’l J Electr
Power Energy Syst 2015;64:340–6.

[37] Moon J, Kim K, Kim Y, Hwang E. A short-term electric load forecasting scheme

using 2-stage predictive analytics. In: 2018 IEEE Int’l Conf. on Big Data and Smart
Computing (BigComp), 2018; 219–226.

[38] Grolinger K, L’Heureux A, Capretz MAM, Seewald L. Energy forecasting for event
venues: Big data and prediction accuracy. Energy Build 2016;116:222–233.

[39] Jurado S, Nebot À, Mugica F, Avellana N. Hybrid methodologies for electricity load
forecasting: entropy-based feature selection with machine learning and soft com-
puting techniques. Energy 2015;86:276–91.

[40] Fard A, Akbari-Zadeh M. A hybrid method based on wavelet, ann and arima model
for short-term load forecasting. J Exp Theoret Artif Intell 2014;26(2):167–82.

[41] Vaghefi A, Jafari MA, Bisse E, Lu Y, Brouwer J. Modeling and forecasting of cooling
and electricity load demand. Appl Energy 2014;136:186–96.

[42] Massana J, Pous C, Burgas L, Melendez J, Colomer J. Short-term load forecasting in
a non-residential building contrasting models and attributes. Energy Build
2015;130:322–30.

[43] Yildiz B, Bilbao JI, Sprou AB. A review and analysis of regression and machine
learning models on commercial building electricity load forecasting. Renew Sustain
Energy Rev 2017;73:1104–22.

[44] Walter T, Price PN, Sohn MD. Uncertainty estimation improves energy measure-
ment and verification proceduresforecasting. Appl Energy 2014;130:230–6.

[45] Gianniou P, Liu X, Heller A, Nielsen PS, Rode C. Clustering-based analysis for re-
sidential district heating data. Energy Convers Manage 2018;165:840–50.

[46] Rahman A, Srikumar V, Smith AD. Predicting electricity consumption for com-
mercial and residential buildings using deep recurrent neural networks. Appl
Energy 2018;212:372–85.

[47] Cai M, Pipattanasomporn M, Rahman S. Day-ahead building-level load forecasts
using deep learning vs. traditional time-series techniques. Appl Energy
2019;236:1078–1088.

[48] Marino DL, Amarasinghe K, Manic M. Building energy load forecasting using deep
neural networks. In: IECON 2016 - 42nd Annual Conf. IEEE Industrial Electronics
Society; October 2016.

[49] Muzaffar S, Afshari A. Short-term load forecasts using lstm networks. Energy Proc
2019;158:2922–7.

[50] Dagdougui H, Bagheri F, Le H, Dessaint L. Neural network model for short-term and
very-short-term load forecasting in district buildings. Energy Build 2019;203.

[51] Fan C, Xiao F, Zhao Y. A short-term building cooling load prediction method using
deep learning algorithms. Appl Energy 2017;195:222–33.

[52] Kim J, Moon J, Hwang E, Kang P. Recurrent inception convolution neural network
for multi short-term load forecasting. Energy Build 2019;194:328–41.

[53] Shi H, Xu M, Li R. Deep learning for household load forecasting–a novel pooling
deep RNN. IEEE Trans Smart Grid 2018;9(5):5271–80.

[54] Bedi J, Toshniwal D. Deep learning framework to forecast electricity demand. Appl
Energy 2019;238:1312–26.

[55] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is
all you need. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R,
Vishwanathan S, et al. editors, Advances in Neural Information Processing Systems
30. Curran Associates, Inc., 2017. p. 5998–6008.

[56] Bourdeau M, Zhai X, Nefzaoui E, Guo X, Chatellier P. Modeling and forecasting
building energy consumption: A review of data-driven techniques. Sustain Cities
Soc 2019;48.

[57] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9(8).
[58] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolu-

tional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors,
Advances in Neural Information Processing Systems 25, Curran Associates, Inc.,
2012. p. 1097–1105.

[59] Ashrae - great energy predictor iii. https://www.kaggle.com/c/ashrae-energy-pre-
diction/overview/evaluation/, last accessed on 12/23/19.

[60] Chulalongkorn university’s building energy management (CUBEMS). http://www.
bems.chula.ac.th/web/central/#, last accessed on 11/20/19.

[61] Bhatia A, Garg V, Mathur J. Determination of energy saving with cool roof concept
using calibrated simulation: Case of a learning centre in composite indian climate. J
Sol Energy Soc India; February 2012.

[62] Enernoc commerical building dataset.https://openenernoc-data.s3.amazonaws.
com/anon/index.html, last accessed on 11/20/19.

[63] Weather underground. https://www.wunderground.com/, last accessed on 11/
20/19.

[64] timeanddate.com. https://www.timeanddate.com/, last accessed on 11/20/19.

G. Chitalia, et al. Applied Energy 278 (2020) 115410

15

http://refhub.elsevier.com/S0306-2619(20)30922-3/h0070
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0070
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0070
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0075
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0075
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0075
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0080
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0080
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0080
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0085
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0085
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0100
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0100
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0100
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0105
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0105
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0105
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0115
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0115
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0115
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0120
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0120
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0125
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0125
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0130
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0130
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0140
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0140
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0145
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0145
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0145
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0150
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0150
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0155
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0155
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0160
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0160
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0160
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0160
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0165
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0165
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0165
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0175
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0175
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0175
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0180
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0180
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0180
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0195
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0195
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0195
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0200
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0200
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0205
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0205
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0210
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0210
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0210
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0215
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0215
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0215
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0220
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0220
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0225
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0225
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0230
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0230
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0230
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0245
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0245
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0250
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0250
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0255
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0255
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0260
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0260
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0265
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0265
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0270
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0270
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0280
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0280
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0280
http://refhub.elsevier.com/S0306-2619(20)30922-3/h0285

	Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks
	Introduction
	Framework and methodology for load forecasting
	Data pre-processing
	Feature set selection
	Deep learning algorithms
	LSTM
	BiLSTM (or Bidirectional LSTM)
	Encoder-decoder model
	LSTM/BiLSTM with attention
	CNN + LSTM, CNN + BiLSTM
	ConvLSTM, ConvBiLSTM

	Hyperparameter fine-tuning
	Load Forecasting: 1-h and 24-h ahead
	Evaluation Metrics
	Metrics for Hour-ahead Forecasting
	Metrics for 24-h ahead Forecasting
	Metrics for comparison among buildings


	Dataset Description
	Building datasets
	Data Pre-processing

	Hour-ahead forecasting
	Feature set selection
	Fine-tuning hyperparameters
	Ensemble learning-based clustering
	Model performance: hour-ahead forecasting
	Sensitivity analysis
	Impact of different lengths of datasets
	Impact of higher resolution data
	Impact of errors in weather forecast
	Impact of seasonal change


	24-h ahead Forecasting
	Load forecasting for other buildings and comparison with the state-of-the-art
	India building
	Three U.S. Buildings
	Comparison among Buildings using RMSLE

	Conclusion
	Declaration of Competing Interest
	References




