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A B S T R A C T

The use of renewable energy resources has grown several fold in the last two decades. One of the main challenges
is the uncertainty in their output power due to fluctuating meteorological conditions like sunshine intensity,
cloud cover and humidity. In desert areas, another parameter that has a significant impact on solar irradiance is
dust, which has been neglected in many studies. In this work, an hour-ahead solar irradiance forecasting model is
proposed, this model utilizes both Aerosol Optical Depth (AOD) and the Angstrom Exponent data observed from
a ground station at the previous hour. The proposed model was tested under different widely used data driven
forecasting models, including Multilayer Perceptron (MLP), Support Vector Regression (SVR), k-nearest neigh-
bors (kNN) and decision tree regression. Applying the MLP model using data from Saudi Arabia shows a root
mean square average error of under 4% and forecast skill of over 42% for one-hour ahead forecast. The proposed
forecasting model demonstrates a superior accuracy compared to other models when tested and verified under
different feature selection schemes. The MLP model is especially applicable for desert areas under clear sky
conditions, where dust storms are frequent and AOD in the air is high (> 0.4).

1. Introduction

Renewable energy resources represent 24% of the total electrical
energy generated worldwide as of 2016 (IEA, 2017), and the solar share
is only 1.2%. Many countries around the world have plans to invest in
large-scale renewable energy projects. However, the main issue with
these resources is the uncertainty in their output power, which can
result in an overall power grid instability. With respect to solar power,
this can be caused by the fluctuation in many meteorological variables,
such as cloud cover, temperature and wind speed. Thus, solar irradiance
forecasting is of great importance for grid operators, allowing them to
ensure the stability of the power grid, optimally set demand response
schedules, economic dispatch and optimize power plant operations.

Saudi Arabia is one of the countries that have ambitious plans to
decrease their dependence on oil and natural gas for energy production.
In 2016 Saudi Arabia revealed that the country plans to produce 9.5 GW
of energy from renewable resources by 2023 (Asif, 2016), with an in-
itial target of 3.45 GW by 2020. The expected total electricity genera-
tion in the country will be around 95 GW by 2023 (Abdel Gelil et al.,
2017). One main issue when installing solar Photovoltaics (PV) in de-
sert areas like Saudi Arabia is the frequent occurrence of dust storms
(Hassan et al., 2017). The dusty weather results in less accurate solar
irradiance forecasts. Moreover, the overall PV module efficiency

decreases due to dust accumulation over the module’s surfaces. In
Notaro et al. (2013) they provided a detailed dust assessment all over
the country with trajectory analysis.

Solar irradiance is directly dependent on multiple weather factors,
mainly cloud cover, humidity and visibility, besides other parameters,
such as ground albedo. Thus, better forecasts of these weather factors
would result in an improved solar irradiance model. However, in some
areas that have low cloud cover, the solar forecasts would be more
affected by the remaining factors. Moreover, areas like Arabian
Peninsula and North Africa are exposed to frequent dust storms and
high aerosols index all over the year. Thus, developing a solar irra-
diance forecasting model that incorporates the dust phenomena is of a
great importance for such areas.

Some work has been carried out to investigate the relationship be-
tween the PV module efficiency and dust accumulation over PV panels
(Sarver et al., 2013; Sulaiman et al., 2014). In Jiang et al. (2016), au-
thors studied the optimum cleaning frequency for the PV module to
improve module efficiency. In Alqatari et al. (2015) authors have
compared the cost and performance of different PV cleaning techni-
ques.

The other main concern due to the presence of dust in the air is the
increased uncertainty in solar radiation forecast. Moreover, the fore-
casted Aerosol Optical Depth (AOD) values are not fully correlated with
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the ground-based AOD measurement. In Cesnulyte et al. (2014) authors
compared AErosol RObotic NETwork (AERONET) data with European
Center for Medium-Range Weather Forecasts (ECMWF) readings across
multiple sites around the world, the average correlation coefficient
found to be 0.77 for dust areas. Thus, uncertainty in forecasted AOD
values would lead to a lower solar forecasting accuracy, especially in
desert areas, where cloud-free environments are dominant and dust
particles have frequent presence in the air.

Machine learning techniques have been widely used in solar irra-
diance forecasting. Artificial Neural Networks (ANNs) are the most
widely used techniques for solar forecasting (Antonanzas et al., 2016),
which have been applied to both short-term (Gutierrez-Corea et al.,
2016) and long-term forecasting (Azadeh et al., 2009). ANN with more
than one hidden layer is usually referred to as Multilayer Perceptron
(MLP). k-Nearest Neighbors (kNN) has also been widely used in the
literature, it has been applied to predict intra hour irradiances (Pedro
and Coimbra, 2015a), and to generate probabilistic forecasts (Chu and
Coimbra, 2017). Other machine learning methods have also been ap-
plied to solar forecasting, such as Support Vector Regression (SVR)
(Belaid and Mellit, 2016), random forests (Ibrahim and Khatib, 2017)
and Lasso (Yang et al., 2015). Machine learning techniques have also
been used in solar forecasting with AOD as input, in Eissa et al. (2013)
they used six thermal channels from SEVERI satellite images to predict
the aerosols at 550 nm, then fed this prediction to ANN model to im-
prove the Global Horizontal Irradiance (GHI), Direct Normal Irradiance
(DNI) and Diffuse Horizontal Irradiance (DHI) forecasts.

Newer techniques such as deep learning has also been implemented
in a number of time series forecasting models (Li et al., 2017; Qiu et al.,
2014; Ryu et al., 2016), it has shown a superior accuracy compared to
other machine learning methods. It was implemented to estimate the
building energy consumption (Mocanu et al., 2016), predict the wind
speed (Hu et al., 2016) and forecast the solar irradiance (Alzahrani
et al., 2017). Convolutional version of deep learning has been im-
plemented to predict the Photovoltaic output power (Wang et al., 2017)
using both deterministic and probabilistic approaches. In Gensler et al.

(2017) they implemented Long Short Term Memory (LSTM) version of
deep learning to forecast the PV output power for the next day. Con-
volutional LSTM version was used to predict the short-term precipita-
tion based on spatiotemporal data sequence (Shi et al., 2015). Spatio-
temporal data were also studied using other methods such as Kriging
(Jamaly and Kleissl, 2017) and applied to solar irradiance forecasting.

Solar forecasting time horizon can be categorized into short-term,
medium-term and long-term forecasting. In the short-term forecasting
the predicted solar irradiance value falls within the next few hours,
multiple short-term models have been developed in the literature
(Ghayekhloo et al., 2015; Pedro and Coimbra, 2015b; Rana et al.,
2016). The medium-term forecasts generate predictions that cover the
span of the next few days (Gulin et al., 2017; Pierro et al., 2016). Lastly,
long-term forecasts predict the solar irradiance for the next few months
to years (Ruiz-Arias et al., 2016a, 2016b).

The ground-based AOD measurement and angstrom exponent never
been used altogether in the literature to construct an hour-ahead solar ir-
radiance forecasting model. In this work, a data driven forecasting model
under clear sky conditions with a large aerosol presence is proposed, uti-
lizing both the ground-based AOD measurements observed at the last hour
alongside the angstrom exponent and other weather parameters. All of the
parameters are fed into the data driven solar forecasting model, which re-
sults in a more accurate (GHI/DNI/DHI) forecast for the next hour. The use
of ground-based AOD measurements would result in a better AOD forecast
accuracy for the next hour, and hence better (GHI/DNI/DHI) forecasting.
The model was trained using hourly data collected from three different
resources, i.e., King Abdullah City for Atomic and Renewable Energy
(KACARE), Copernicus Atmosphere Monitoring Service (CAMS) and
AERONET over the period of three years 2013–2015. The test site is in
Riyadh, Saudi Arabia, chosen because it is frequently exposed to different
degrees of dust storms over the year, ranging from mild to severe storms
(Nabavi et al., 2016). Annual average AOD at 550 nm over the world for the
year 2015 is shown in Fig. 1, as can been seen from Fig. 1 the test location
reside in area where the average AOD is high. In Fig. 2 the annual average
GHI over Saudi Arabia is shown.

Fig. 1. Annual average AOD at 550 nm over the world for the year 2015 using CAMS dataset.
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2. Solar irradiance forecasting methods

In order to design the proposed solar forecasting system, machine
learning/data driven approaches were used. Different machine learning
methods, namely Multilayer Perceptron (MLP), SVR, kNN and decision
tree were implemented. Discussion on each method implemented is
provided below. The inputs for these models are listed in Table 1. For
each solar irradiance variable (i.e., GHI, DNI and DHI), a forecasting
model was generated using these four methods. Each forecasting
method was tested under different feature selection schemes as shown
in Table 2.

The basic structure of the forecasting model is shown in Fig. 3,
where we use ground observed values from the previous hour and the
next hour forecasts provided by CAMS. Since the site under study is in a
desert area, hence it is dry and has low relative humidity over the tested
period (on average 16%). Therefore, this study selectively excludes
humidity from the set of predictors. 2.1. Multilayer perceptron

The basic component of any MLP network is a neuron. A single
neuron output is calculated based on the summation of the incoming
neurons values, originating from the previous layers, then multiplied by
the weights on these connections and added to a bias term, finally
applied to an activation function, as shown in Eq. (1). The structure of a
single neuron is shown in Fig. 4.

∑= ⎛

⎝
⎜ + ⎞

⎠
⎟

=

φ f b w a
i

n

i i
1 (1)

where b is the bias term; wi is the weight on each connection; ai is the
value of each incoming connection; nis the total number of incoming
connections for the neuron; f is the activation function; and φ is the
output value. The choice of the activation function depends on the
problem on hand. For time series predictions, Rectified Linear Unit
(ReLU) has proved to have the best accuracy performance compared to
all other activation functions. Eq. (2) shows the updated neuron output
φ after applying the ReLU activation function.

Fig. 2. Annual GHI over Saudi Arabia for the year 2013 based on Meteosat data.

Table 1
Input variables to the forecasting models.

Input variable Input variable explanation

xi
1 Ground measured GHI at last hour

xi
2 Ground measured DNI at last hour

xi
3 Ground measured DHI at last hour

xi
4 Hour of the Day

xi
5 Month of the Year

xi
6 Solar Zenith Angle

xi
7 Wind Speed

xi
8 Wind Direction

xi
9 CAMS AOD at 550 nm

xi
10 AERONET AOD at 550 nm observed at last hour

xi
11 Angstrom Exponent α

Table 2
GHI/DNI/DHI forecasting model feature selection schemes.

Variable Feature selection scheme Input variables

GHI 1 ⋯x x x, , ,i i i
1 4 7

2 ⋯x x x, , ,i i i
1 4 9

3 ⋯x x x x x, , , , ,i i i i i
1 4 8 10 11

DNI 1 ⋯x x x, , ,i i i
2 4 7

2 ⋯x x x, , ,i i i
2 4 9

3 ⋯x x x x x, , , , ,i i i i i
2 4 8 10 11

DHI 1 ⋯x x x, , ,i i i
3 4 7

2 ⋯x x x, , ,i i i
3 4 9

3 ⋯x x x x x, , , , ,i i i i i
3 4 8 10 11
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Neurons are only the building blocks of the MLP model. The basic
structure of the proposed model is illustrated in Fig. 5.

The first layer is the input layer (in green), which is the input data
(i.e., training data) entry points to the network that will construct
model parameters. Subsequent layers (in grey) are the hidden layers.
The MLP network could have as many hidden layers as needed, the
number of hidden layers and the structure of the network is highly
dependent on the application. This work involved two hidden layers as
any additional hidden layers do not contribute to the model’s overall
accuracy.

The input data points of the proposed model are defined as
= ⋯X x x x[ , , , ]i i i i

l1 2 , and their labels are yi, where ∈ ⋯i n{1, 2, }, n is the
total number of training data points and l is the total number features

for the input data point. The output of each data point Xi is denoted as
〈 〉h X W,i , where W is the set of weights on the connections between the

neurons across all of the network.
After the construction of the network, the goal now is to find the

optimum set of weights W , such that the error between the actual and
the predicted labels values is minimized. In order to achieve this, the
squared error loss function (Eq. (3)) is added at the output neuron
(denoted in red as shown in Fig. 5), at which the performance of the
proposed MLP model is being optimized, by comparing the ground
truth labels with the predicted values, during the training phase.

= 〈 〉−L h X W y1
2

( , )i i
2

(3)

where 〈 〉h X W, is the predicted value; yi is the actual value; and Lis the
total loss. Now, in order to find the optimum W values, the gradient of
the loss function Lis computed with respect to each weight on the

Fig. 3. Basic structure of the forecasting model.

Fig. 4. Neuron structure.
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network →wj k, where, j kand denote the neuron index; and →wj k denotes
the connection between neuron j to neuron k. So, the gradient can be
expressed as shown in Eq. (4):

= ∑ 〈 〉−

= ∑ 〈 〉− 〈 〉

∂
∂

∂
∂
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→ →

→
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( ) ( , ) ,

( , ) , .

w w
i

i i

i
i i w i

1
2

2
i k i k

i k (4)

Finally, the gradient for each weight in the network is to be de-
termined, until the optimum value for each weight is reached, i.e., the
overall loss is minimized. This would be computationally expensive if
classical optimization techniques, e.g., gradient decent, are used. Thus,
the Adam solver (Kingma and Ba, 2015) was selected for solving this
problem, which proved to perform well on large datasets.

The structure of the implemented MLP network has seven neurons
at the first hidden layer and five neurons at the second hidden layer.
The number of these neurons at these different layers was selected by
adding more neurons and keep tracking the Root Mean Square Error
(RMSE) performance, until the error is minimized over the training
data. Adding more neurons to the first or second hidden layers does not
improve the model’s overall accuracy.

2.2. Support Vector Regression

Support Vector Regression (SVR) is a supervised machine learning
algorithm. It is extension of Support Vector Machines (SVM) to re-
gression problems. It solves the following optimization problem:
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where q is the weight vector; β is the bias term; ∗ξ ξ,i i are the slack
variables; C is a tradeoff variable for the flatness of the curve; and ε is
the tolerance variable; ϕ X( )i is the higher dimensional training vector
resulted from Xi. After solving the problem for q and β, the test point
label ̂yi can be predicted as follows:

̂ = 〈 〉 +y q ϕ X β, ( ) ,i i (6)

where 〈 〉. ,. is the dot product of q and ϕ X( )i . Now, solving for the dual
problem of Eq. (5) and the introduction of the Lagrange multipliers, the
final solution will be as follows:

̂ ∑= − +
=

∗y δ δ K X X β( ) ( , ) ,j
i

n

i i i j
1 (7)

where ∗δ δ,i i are the Lagrange multipliers and K X X( , )i j is the kernel
function used to find the dot product between two ϕ without trans-
forming them into the higher dimensional space. Thus, the computa-
tional complexity would be lowered significantly, this is commonly
known as the kernel trick. SVR error performance could be improved by
the use of kernels as well. There are four known kernels used in the
literature, linear, Radial Basis Function (RBF), polynomial and sigmoid
kernels. The RBF kernel has proved to work well on regression problems
in the literature, due to its computational efficiency (Olatomiwa et al.,
2015). In this work, RBF was used as Kernel, the mathematical for-
mulation for the kernel is as follows:

=
−∥ − ∥

K X X e( , ) .i j

Xi Xj
σ

2

2 2 (8)

For SVR, similar steps were followed as the MLP. The C value that
minimizes the RMSE over the training data was chosen, the optimum C
value in this work was found to be 1000.

2.3. kNN regression

kNN is a widely used clustering algorithm. However, it could also be
implemented to solve regression problems. For each test point ̂x the
distance to all training datapoint xi is to be determined in the dataset as
follows:

̂∑= −D x x( ) .i
j

i
j j 2

(9)

For each test point ̂x the distance to all training points xi is com-
puted, then the k nearest neighbors labels values yi are averaged to
predict the ̂x label value ̂y . In this work, kNN was optimized by
changing the number of neighbors and tracking the RMSE values over
the training data. The RMSE value was at its minimum when the
number of neighbors k is five.

2.4. Decision tree regression

Decision trees is a widely used machine learning algorithm, it can be
used for both classification and regression. It is constructed by nodes
and leafs, each node has different number of branches which would
lead to another nodes or leafs. Each test point will start from the root
node, then will follow the branches that are tested to be true for that
test point, this procedure will be followed until a leaf is reached, then

Fig. 5. MLP network structure.
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the predicted value ̂yi of a test point is assigned a value as the value of
the leaf that is has reached. The construction of the tree could be done
using different algorithms, one of most widely used algorithm is
Iterative Dichotomiser 3 (ID3), however, in this work we have im-
plemented the classification and regression trees (CART) algorithm,
since it would also solve the regression problem, and not restricted to
the classification problem.

2.5. Model evaluation and error measure

2.5.1. Error measure
The evaluation of the model accuracy is based on the RMSE, a

widely used error measure in regression problems. The mathematical
formulation of the RMSE is shown in Eq. (10):

̂
=

∑ −=RMSE
y y

n
( )

,i
n

i i1
2

(10)

where ̂yi is the predicted value at timei; yi is the actual (ground truth)
value and n is the total number of points in the testing dataset.

The second error metric used in this work is the Mean Absolute
Percentage Error (MAPE), it is defined as follows:

̂∑=
−

=

MAPE
n

y y
y

(%) 100 .
i

n
i i

i1 (11)

2.5.2. Smart persistence
Smart persistence is the benchmark model implemented in this

work, it is based on the deterministic irradiance variation from time t
and time +t T , calculated from the clear sky model. The smart per-
sistence mathematical formulation is as follows:

̂ + = +I t T I t T
I t

I t( ) ( )
( )

( ),sp
cs

cs (12)

where ̂ +I t T( )sp is the smart persistence irradiance prediction at time
+t T , +I t T( )cs is the clear sky model at time +t T , I t( )cs is the clear

sky model at time t , I t( ) is the irradiance observed value at time t . The
Ineichen and Perez clear sky model (Ineichen and Perez, 2002; Perez
et al., 2002) was used in this work.

2.5.3. Forecast skill
The performance of the forecasting models need to be normalized

by a benchmark. The forecast skill proposed in Coimbra et al. (2013), is
a way to normalize and compare the accuracy of the model against the
benchmark model. The mathematical formulation of the forecast skill is
as follows:

= −FS RMSE
RMSE

1 ,model

sp (13)

where FS is the forecast skill value, RMSEmodel is the RMSE value re-
sulted from the forecasting model, RMSEsp is the RMSE resulted from
the smart persistence model. A forecast skill of 0 indicates that the
model performance is similar to the smart persistence model. A higher
positive FS value indicates that the model has a better performance
compared to the smart persistence model, with a maximum FS value of
1. A negative FS value indicates that the forecasting model performs
worse than the smart persistence model.

2.5.4. Data splitting
In this work, the available dataset was divided into training and

testing subsets. The split ratio was 80% for training data and the re-
maining 20% for testing and validation, following the best known
practices for the training/testing ratio allocation. The training data
were used to train the MLP, kNN, SVR and decision tree models, then
find the optimal model parameters for each method. The remaining
20% of data were used to measure the final performance of the

implemented models. The error was measured based on RMSE, by
comparing the actual solar irradiance readings with the forecasted va-
lues, as described in Eq. (10). After that, the forecast skill is obtained as
shown in Eq. (13).

3. Datasets

The datasets used in this study were collected from KACARE,
AERONET, and CAMS, covering the period of three years from January
14th, 2013 to December 31st, 2015 with a temporal resolution of one-
hour. The data collection, cleaning and quality assurance techniques for
each dataset are discussed below.

3.1. KACARE dataset

KACARE is a government agency responsible for the renewable
energy legislation, analysis, measurements and research in Saudi
Arabia. In 2013, KACARE started Renewable Recourse Monitoring and
Mapping (RRMM) Solar Measurement Network. The goal of this RRMM
Solar Measurement Network is to provide accurate ground-based
measurements of solar radiation alongside the relevant weather para-
meters across the country. The total number of stations in the network
is 53 (Zell et al., 2015).

The KACARE dataset used in this work was collected in Riyadh,
Saudi Arabia, with exact site information as shown in the Table 3.

The used measurement instruments are listed in Table 4.
KACARE data are collected every minute during daytime, con-

taining GHI, DNI, DHI and relative humidity readings. In this work, we
have computed the one-hour average of these 1-min readings. So, for
each hour HH:MM, we average all the minutes MM in that hour from
MM=00 to MM=59, then use this averaged (GHI/DNI/DHI) value in
the tested models asx x,i i

1 2 and xi
3. In order to have more robust mea-

surements, a secondary Pyranometer similar in make and model was
installed at the same site to measure GHI, plus the rotating shadowband
radiometer listed in Table 4. Data is collected from the secondary
equipment in case of the failure of the primary equipment. The last
column in Table 4 shows whether the equipment was used as a primary
or a secondary for the measurements. For post processing data quality
assurance NREL’s Solar Energy Research Institute Quality Control
(SERI-QC) procedures were followed (Maxwell et al., 1993). Data can
be requested through KACARE Atlas website (KACARE; https://rratlas.
kacare.gov.sa/).

3.2. AERONET dataset (AERONET; https://aeronet.gsfc.nasa.gov/)

The AERONET program is a remote sensing ground-based mea-
surement network supported by NASA and many international institu-
tions around the world. Their goal is to measure the AOD across dif-
ferent locations in the world and provide these measurements,
alongside with microphysical properties, as an open access data.

AOD is a measure of the attenuation of radiation due to aerosols.
AOD has no unit of measurements, i.e., unitless. The minimum AOD
value is zero, which indicates that the atmosphere is clear. AOD value
of 1 or more indicates a severe dust storm present in the scene.
Depending on the type of aerosols to be estimated, AOD is measured at
multiple wavelengths. In this work, the focus is to investigate the effect
of dust, which is measured at 550 nm, using both ground-based and
satellite-based measurements.

AOD equipment for the tested site is located at the same coordinates

Table 3
KACARE site information.

Latitude 24.90693° North
Longitude 46.39729° East
Elevation 764.0 Meters
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shown in Table 3. This site has AOD readings at seven different wa-
velengths (i.e., 340, 380, 440, 500, 670, 870 and 1020 nm), as well as
water vapor, solar zenith angle and the angstrom values. This study
focuses on the wavelengths at 440 and 670, since they are used to ex-
trapolate the AOD value at 550 nm, at which the dust concentration in
the air is being measured. The extrapolation of AOD at 550 nm can be
calculated as follows:

⎜ ⎟⎜ ⎟= ⎛
⎝

− ⎛
⎝

⎞
⎠

⎞
⎠

τ τ α λ
λ

exp ln( ) ln ,2 1
2

1 (14)

where τ1 is the AOD at 440 nm; α is the Angstrom Exponent and it is a
good indicator for the aerosol particle size in the air, α≤ 1 indicates
that the AOD particle distribution is mainly dominated by coarse mode
particles, while α≥ 2 represents an AOD distribution that is mainly
dominated by a fine mode particles (Schuster et al., 2006), τ2 is the
desired AOD at 550 nm, at which the dust accumulation in the air is
being measured. λ1 and λ2 are the wavelengths at 550 nm and 440 nm.
Angstrom Exponent α can be found using the AOD readings at 440 nm
and 670 as follows:

= −
−

α τ τ
λ λ

ln( ) ln( )
ln( ) ln( )

,3 1

3 1 (15)

where τ3 is the AOD value at 670 nm and λ3 is the wavelength at
670 nm.

The dataset has multiple readings every hour without consistency in
data reading intervals. However, in most of the days there is at least one
reading every hour. If multiple readings are recorded for an hour
HH:MM, all the readings through that hour (MM=00 to MM=59) are
averaged, hence, we have one value per hour, this value is denoted as
xi

10 as shown in Table 1. If one hour has a no readings, then the missing
reading at this hour is substituted by implementing a linear interpola-
tion. Fig. 6 shows histogram of how many distinct hours the AERONET
AOD readings are measured each day for the tested site.

It can be seen that 92 days that have readings at 12 distinct hours.
Clearly from the plot, some days have measurements only 1 h or 2 h. In
this case linear interpolation will not provide realistic AOD values.
Thus, in order to ensure the quality of input data, the dataset was se-
lectively chosen to include only the days that have readings recorded
for at least 6 distinct hours during that day. Data from AERONET are
available at three quality levels: Level 1.0 is raw data collected from the
measurement devices directly; Level 1.5 data are cloud screened; and
Level 2.0 data are cloud screened and manually inspected (Smirnov
et al., 2000). Level 1.5 data were used in this work due to the un-
availability of Level 2.0 for the requested period of time. AOD data are
measured using CIMEL C-318 sunphotometer (Myers et al., 2002).

3.3. CAMS dataset

CAMS is one of the Copernicus programs aimed to provide data on
atmospheric composition at regional and global scale. It is managed by
the European Commission (EU), in partnership with European Space
Agency (ESA), the European Organization for the Exploitation of
Meteorological Satellites (EUMETSAT) and the ECMWF.

The data contains many air quality parameters. It has AOD readings
at five different wavelengths (i.e., 469, 550, 670, 865 and 1240 nm),
Particulate Matter at different diameters (i.e., 10, 2.5, 1 µm), plus other
weather parameters, such as temperature, wind speed, dew point
temperature, cloud cover and albedo.

The CAMS system utilizes AOD data retrieved from both Polar
Multi-Sensor Aerosol Product(PMA )P provided by EUMETSAT, along-
side with the AOD data retrieved from Moderate Resolution Imaging
Spectroradiometer (MODIS) provided by NASA.

A grid size of 0.5°× 0.5° that contains the site indicated in Table 3
was used in this work. The temporal resolution of the CAMS data is
based on 3 h forecasting step, starting from 00:00 UTC to 21:00 UTC for
each day, so, for each day the available forecasts are for the hours
00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00 and 21:00, a total of 8
readings. In order to match the temporal resolution of the CAMS
readings with other KACARE and AERONET datasets readings, a linear
interpolation was performed on CAMS dataset, such that, a one reading
was made available at each hour of the day. In this work, we im-
plemented an hour-ahead forecasting model, hence, we used the fore-
casted CAMS AOD value for the next hour, which was already inter-
polated as discussed above. This CAMS AOD value is fed into the model
as xi

9, as shown in Table 1. All of CAMS data used in this work are
available through ECMWF website (ECMWF; https://www.ecmwf.int/).

4. Data analysis

This section provides some insights and analysis about the dataset
implemented in this work. Fig. 7 shows a windrose plot alongside with
dust AOD values for the site under study in Riyadh, Saudi Arabia. The
location is surrounded by two deserts, the Rub’ Al-khali desert from the
South and South East and Addahna desert from the North East. This
makes the selected site a perfect choice for this work.

As can be clearly seen from the plot, the AOD values are highly
dependent on the wind direction. The southern winds would have a
higher chance of carrying dust particles, and in the second place the
northern winds with a lower chance. This could be understood,
knowing the fact that there is a large sand dessert laying at the southern
side of the site, and another large desert laying at the northeastern side.
Thus, any wind originating from these directions would have a higher
probability of carrying sand particles, hence increasing the AOD value.
Conversely, winds coming from the western side would have a lower
probability of carrying dust particles. Therefore, dust intensity in the air
is highly dependent on the wind direction. Accordingly, the solar ir-
radiance is dependent on wind direction as well.

A scatter density plot to compare AERONET AOD at 550 nm
(AOD550) and CAMS AOD550 values is shown in Fig. 8. As can be clearly
seen, CAMS AOD550 seems to overestimate the actual AERONET AOD550

readings. The correlation between the two datasets found to be 0.634.
This moderate correlation coefficient means that CAMS AOD550 fore-
casts are uncertain. Accordingly, this would lead to a lower solar irra-
diance forecasts accuracy. Thus, a ground-based measurement for
AOD550 would provide a correction factor for CAMS AOD550 forecasts for
the next hour, hence, a more accurate solar irradiance forecasts.

Fig. 9 shows the AERONET AOD550 hourly readings histogram. The
standard deviation is 0.3070 with the mean of 0.4413. Statistics of the
remaining variables are shown in Table 5. The AOD550 covers the
spectrum of clear sky to heavily dusty weather.

Fig. 10 shows the average monthly AOD550 for the test site, starting
from 2013 to 2015, for both the AERONET and CAMS datasets. April

Table 4
List of measurement Instruments.

Parameter Equipment Units Uncertainty Details

Relative
Humidity

Relative Humidity Probe % RH ±3%
to±7%

Primary

GHI Pyranometer W/m2 ±2.0% Primary
GHI Rotating Shadowband

Radiometer
W/m2 ±5.0% Secondary

DNI Pyrheliometer W/m2 ±2.0% Primary
DNI Rotating Shadowband

Radiometer
W/m2 ±5.0% Secondary

DHI Pyranometer W/m2 ±2.0% Primary
DHI Rotating Shadowband

Radiometer
W/m2 ±5.0% Secondary

AOD CIMEL C-318
Sunphotometer

No unit ± 0.01 OD Primary
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then May have the highest AOD550 among all the other months in both
datasets. Moreover, CAMS dataset appears to overestimate the AOD550

values most of the year except for the months starting from August to
December. This over estimation in the AOD550 values obtained from
CAMS dataset is expected as can be seen in Fig. 8.

In Fig. 11 the average behavior of (GHI/DNI/DHI) over the whole
dataset is shown under different AOD values. As can be seen from the
figure, DNI is the most sensitive radiation variable to AOD. DNI drops
by roughly 60% when moving from clear atmosphere periods
(AOD=0) to periods with large aerosol presence (AOD=1) caused by
extreme dust events. On the other hand, DHI increases as AOD value
increases. DHI increases by roughly 130% when moving from a clear
sky condition to an extreme dust condition. Lastly, GHI is the least
sensitive variable to AOD. That is mainly because GHI is composed of
both DNI and DHI. Hence, any loss in the DNI component is partially

compensated by the increase in DHI component. As a result, the effect
of AOD on GHI is limited.

5. Results and discussion

The forecasting model basic structure is shown in Fig. 3. The input
variables for GHI/DNI/DHI forecasting models are listed in Tables 1
and 2. The construction of each forecasting method and the different
subsets of the selected parameters are discussed in Section 2.

Table 6 shows the GHI results using the testing data under these
different methods and feature selection schemes. Each row in Table 6
represents a set of selected features and each column represents the
forecasting method used. For the first row in Table 6, features

⋯x x x, , ,i i i
1 4 8 are considered, they represent a set of features as de-

scribed in Table 1, these features are considered the basic feature se-
lection scheme in this work. As we move to the next row, when the
CAMS AOD550 xi

9 is added to the model, an improvement can be seen in
all the models except for the kNN. Now, as we move to the last row,
when we remove the CAMS AOD550 xi

9 and add both the AERONET
AOD550 xi

10 and the angstrom exponent xi
11, improvement was observed

in all tested models. When comparing the FSs for the MLP, kNN and
SVR in the last row with the CAMS AOD550 model, an improvement of
around 9%, 2% and 0.45% was observed, respectively. As can be seen
from Table 6, when the new features are added, the RMSE and FS re-
sults for the MLP model kept on improving, while those for the SVR and
kNN have no noticeable improvement. The smart persistence model for
the GHI achieved an RMSE of 56.54 (W/m )2 , the values for this smart
persistence model were computed as described in Eq. (12), and then the
RMSE for this model was obtained as shown in Eq. (10). The GHI
forecasting model implemented using the MLP has the best RMSE re-
sults on average, also it achieved the best RMSE result when the pro-
posed features (i.e., xi

10and xi
11) were added. Moreover, MLP model has

a FS improvement of around 16.6% when compared to the best per-
forming model in the remaining models (i.e. kNN, SVR, decision tree).

On average the AOD550 effect on the GHI results across all tested
methods is limited. To further analyze this effect, the MAPE for GHI
forecasts was computed versus the AOD550 values under two solar ze-
nith angels θ=40° and 60°. Fig. 12 shows the MAPE for the GHI model

Fig. 6. Histogram of the number of hours the AOD was measured each day, based on the data provided by AERONET for KACARE sites.

Fig. 7. Windrose plot versus AOD values.
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when tested under these two solar zenith angles, the MAPE for GHI has
a slight increase as the AOD550 value increases, this is shown in Fig. 12
as the red and blue lines. Hence, the errors in the GHI forecasts increase
as the AOD550 value increases. Moreover, the MAPE for GHI also in-
creases as the solar zenith angle increases (i.e. the beginning and the
end of the day). However, the MAPE tend to stay below 10% and
around 5% on average. As can be seen from Fig. 12, the maximum
MAPE for the GHI occurs at high AOD550 values. When θ=60° the
MAPE is around 10%, while for θ=40° it’s around 4%. Hence, AOD550

has some effect on GHI, however, this effect is limited, this can be

Fig. 8. AERONET AOD values at 550 nm vs. CAMS AOD values at 550 nm. The dashed line represents the ideal estimation case.

Fig. 9. AERONET AOD at 550 nm histogram.

Table 5
Variables mean and standard deviation.

Mean Standard Deviation Unit

GHI 620.34 272.96 W/m2

DNI 567.11 242.26 W/m2

DHI 221.63 112.82 W/m2

Wind Speed 4.212 1.75 m/s
AERONET AOD550 0.4413 0.3070 –
CAMSAOD550 0.5375 0.2569 –
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clearly seen in Table 6, as the AOD550 values were added to the models,
only a limited improvement was observed in the RMSE values on
average. The yellow lines and the right y-axis in the Fig. 12 show the
GHI values under different AOD550 values, as for the MAPE, the GHI
readings were also analyzed under two solar zenith angles θ=40° and
60°. As can be seen from the yellow lines, the GHI values decrease as the
AOD550 value increases. However, this decrease in the GHI value is

smooth and not steep as to be compared with DNI values later. The
analysis using remaining solar zenith angles would lead to similar re-
sults. However, the results for θ=40° and 60° are shown since the
remaining zenith angles have some missing readings in the test data set
under specific AOD values.

Overall, GHI results indicate that the MLP model outperformed all
other methods as the new features were added. Hence, the MLP model

Fig. 10. AERONET and CAMS average AOD at 550 nm for each month of the year, using data from 2013 to 2015.
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is able to understand the complexity and diversity of these features and
keep minimizing the RMSE. On the other side, the kNN, SVR and de-
cision tree methods seem to saturate around the same RMSE value as
these new features were added. The RMSEs for training and testing
datasets are shown in Fig. 13, for both kNN and SVR when they are
tested under different feature selection schemes. It is apparent that
these two models were overfitted when some features were added as
can be seen in Fig. 13. The model parameters for kNN and SVR were
optimally chosen based on the training set, the kNN model was tested
under different number of neighbors k, the model’s RMSE saturates
around k=5. Similarly, for the SVR, the model was tested under dif-
ferent C values, the optimum C value is found to be 1000. In Aybar-Ruiz
et al. (2016), they were able to achieve a FS of 22% using their best
subset of features including the GHI observed only at the last hour, in
Grantham et al. (2016) they achieved 30.5% FS over the one-hour
forecast horizon.

Table 7 shows DNI results under the same discussed models and
feature selection schemes, the results presented were computed using
the testing data discussed earlier. The parameters of the kNN and SVR
models were optimized again for the DNI model following similar steps
discussed earlier for the GHI model. The smart persistence model for
the DNI achieved an RMSE of 102.40 (W/m )2 . As can be seen from
Table 7, the accuracy of all the models kept on improving as more
features were added.

In order to analyze this more, the MAPE for DNI is calculated under
different AOD550 values. Fig. 14 shows the MAPE for DNI versus the
AOD550 value for the model ⋯x x x, , ,i i i

2 4 9, where the ground observed
AOD550 and angstrom exponent (i.e., xi

10 and xi
11) were not added to the

model yet. As before, MAPE for the DNI was measured at two solar

zenith angels θ=40° and 60° shown in red and blue in Fig. 14. As can
be seen from the plots, MAPE for the DNI increases noticeably as the
AOD550 value increases. Hence, DNI value is very sensitive to AOD550

value under the clear sky conditions. The effect of AOD550 on DNI value
is 3–4 times larger when compared to the GHI (Gueymard, 2012), this
can be clearly seen when comparing the GHI and DNI errors in both
Fig. 12 and Fig. 14 under the same θ. The maximum MAPE for the GHI
when θ=60° is about 10% while that for the DNI is around 45%.
Moreover, the MAPE for DNI also increases as the solar zenith angle
increases (i.e. the beginning and the end of the day). In Ruiz-Arias et al.
(2016a, 2016b) they studied multiple AERONET locations around the
world and classified the tested site (i.e. Riyadh, Saudi Arabia) as high
turbidity site, moreover, they show that the AOD versus DNI relation-
ship can be characterized by a linear estimation in low turbidity sites,
however, for high turbidity sites the linear relationship is no longer
applicable, hence, constructing a DNI forecasting model will be a
harder problem in these sites. The yellow lines and the right y-axis in
Fig. 14 show the DNI value under different AOD550 values, DNI values
were computed under two solar zenith angels θ=40° and 60°. When
the AOD550value increases, a high drop in the DNI values is noticed for
the same solar zenith angle θ.

Now, as the ground measured AERONET AOD550 xi
10 and the ang-

strom exponent xi
11 were added to the model, a good improvement in

the RMSE and FS values was observed in all of the tested methods, with
the MLP having the best RMSE and FS results among all of the other
methods. As can be seen from Table 7, the ground measured AERONET
AOD550 and the angstrom exponent (i.e., xi

10 and xi
11) acted as a cor-

rection factor for the CAMS AOD550 (i.e., xi
9) forecasts, hence, the FS for

DNI model using MLP has improved by around 8.5% compared to the

Table 6
RMSE results (W/m )2 for GHI model and the forecast skill (FS).

Input variables MLP kNN SVR Decision tree

RMSE FS % RMSE FS % RMSE FS % RMSE FS %

⋯x x x, , ,i i i
1 4 8 38.24 32.35 38.15 32.52 57.97 −2.53 48.51 14.20

⋯x x x, , ,i i i
1 4 9 37.78 33.16 43.23 23.52 56.37 0.28 45.78 19.08

⋯x x x x x, , , , ,i i i i i
1 4 8 10 11 32.75 42.10 42.11 25.51 56.11 0.75 45.88 18.85
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Fig. 12. Left y-axis shows MAPE for GHI vs AOD, right y-axis shows GHI value vs. AOD. The results were computed for different solar zenith angels θ=40° and 60°.
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model where xi
10andxi

11 were not added. The MLP model had an im-
provement of around 7.5% compared to the best performing model in
the remaining models (i.e. kNN, SVR and decision tree). The kNN, SVR
and decision tree models had all improved by around 7.28%, 7.3% and
3.34%, respectively, when the new features (i.e., xi

10 and xi
11) were

added. Overall, a noticeable improvement had been achieved among all
the tested models when the new features (i.e., xi

10and xi
11) were added.

This is to be expected, since the DNI is very sensitive to AOD550 values
as shown in Fig. 14, hence, a more accurate AOD550 indicators would
lead to better performing DNI forecasting model.

The performance of GHI and DNI using the MLP model was tested
under extreme dust events that persisted for a number of days as these

values are of special importance to grid operators. These parameters
were analyzed for a period of three days starting from 6th to 8th of
September 2013. This analysis was conducted using the best set of
features as shown in the last row in Tables 6 and 7. The average AOD
over these three days is 0.84. The AOD behavior during the daytime on
these days is depicted in Fig. 15. The forecast skill for GHI when using
MLP is 28.34%, whereas for the DNI it is 14.56%.

Table 8 shows the RMSE and FS for DHI model, measured using the
testing dataset, under different methods and features selection schemes.
The kNN and SVR models’ parameters were optimized again for the DHI
model following similar steps discussed earlier for the GHI model. The
smart persistence model for the DHI achieved an RMSE of 41.59
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Fig. 13. the training and testing error for tested under two methods. (a) shows the RMSE values for the SVR model. (b) shows the RMSE for the kNN model.

Table 7
RMSE results (W/m )2 for DNI model and the forecast skill (FS).

Input variables MLP kNN SVR Decision tree

RMSE FS (%) RMSE FS (%) RMSE FS (%) RMSE FS (%)

⋯x x x, , ,i i i
2 4 8 76.55 25.24 84.01 17.94 79.40 22.46 81.78 20.13

⋯x x x, , ,i i i
2 4 9 72.06 29.62 83.64 18.31 78.52 23.31 81.47 20.43

⋯x x x x x, , , , ,i i i i i
2 4 8 10 11 63.36 38.12 76.18 25.59 71.02 30.64 78.05 23.77
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Fig. 14. Left y-axis shows MAPE for DNI vs AOD,
right y-axis shows DNI value vs. AOD. The results
were computed at different solar zenith angels
θ= °40 and °60 .
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(W/m )2 . On average, the MLP model outperformed all of the remaining
methods under all feature selection schemes, the decision tree regres-
sion had the second best performance. As more features were added to
these models, their RMSE and FS had improved for all of the tested
methods. At first, improvement was observed when adding the CAMS
AOD550 xi

9 in all tested models. As the proposed features (i.e., xi
10 and

xi
11) were added, the overall accuracy has improved significantly across

all models, and slightly for the SVR. For the MLP model, the FS has

improved by around 13.4% when compared to the model that utilizes
the CAMS AOD550. Similarly, FS has improved by around 7% for the
kNN, 4.5% for SVR and 12.5% for decision tree. As for the GHI and DNI
models implemented earlier, the MLP model has shown a superior ac-
curacy when compared to the other methods, moreover, the proposed
features (i.e., xi

10and xi
11) increased the accuracy noticeably across all

the tested methods.
Further analysis for the DHI performance versus the AOD550 value is
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Fig. 15. Hourly AOD values during sand storm that persisted for three days, starting September 6th to 8th in 2013.

Table 8
RMSE results (W/m )2 for DHI model and the forecast skill (FS).

Input variables MLP kNN SVR Decision Tree

RMSE FS (%) RMSE FS (%) RMSE FS (%) RMSE FS (%)

⋯x x x, , ,i i i
3 4 8 31.00 25.45 35.66 14.25 37.89 8.9 36.36 12.56

⋯x x x, , ,i i i
3 4 9 29.47 29.13 33.81 18.68 36.88 11.31 35.98 13.48

⋯x x x x x, , , , ,i i i i i
3 4 8 10 11 23.90 42.52 30.88 25.73 35.02 15.78 30.79 25.96
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Fig. 16. Left y-axis shows MAPE for DHI vs AOD, right y-axis shows DHI value vs. AOD. The results were computed at different solar zenith angels θ=40° and 60°.
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shown in Fig. 16. The MAPE for DHI decreases as the AOD550 value
increases. The MAPE is relatively small when compared to the MAPE
for DNI model under the same solar zenith angle. For example, when
θ=60°, the maximum MAPE for the DHI model is about 15%, while for
the DNI model it’s is about 45%. As with the previous models, the
MAPE for DHI increases as the solar zenith angle increases (i.e. at the
beginning and the end of the day). The DHI readings were also com-
pared with the AOD550 values in Fig. 16 as shown in yellow lines and the
right y-axis. As can be clearly seen, the DHI readings increase as the
AOD550 value increases. This is mainly because of the radiation scat-
tering caused by the AOD550 particles in the air. Overall, a significant
improvement has be achieved when the new features were added to the
model, that’s due to the fact that DHI is moderately sensitive to AOD550

as shown in Fig. 16. Hence, feeding the tested models with the new set

of features (i.e., xi
10and xi

11), would lead to an improved accuracy for
the DHI forecasting model across all the implemented methods. Fig. 17
shows the MLP model sensitivity for (GHI/DNI/DHI) under different
AOD values. As can be seen from the figure and as discussed earlier in
Fig. 11, the DNI is the most sensitive radiation variable to dust; DHI is
less sensitive to dust when compared to DNI; and GHI is the least
sensitive to dust.

All implemented models were tested under different ratios of
training/testing datasets. Table 9 shows the resulted RMSE values
averaged over all implemented models for all radiation variables (GHI/
DNI/DHI) when tested under the best feature selection scheme. Overall,
the error variation under different allocations of training/testing data-
sets is limited.

The performance of all methods has been tested under high and low
AOD. Low values are when AOD≤ 0.5, whereas high values are when
AOD > 0.5. Table 10 shows the performance of all tested models under
the high and low AOD values for all radiation variables (GHI/DNI/
DHI). As shown, MLP has the best performance among all methods
under all radiation variables, for both the high and low AOD value
cases. As can be seen from results, the accuracy of all methods decreases
when AOD values are high. Fig. 18 shows the MAPE performance for
(GHI/DNI/DHI) for each month of the year. MAPE has a slight increase
for high AOD months for both GHI and DNI, whereas for DHI the MAPE
decreases during these months. The models’ performance has been
analyzed for periods with above average variability values. The average
and standard deviation for these inputs are shown in Table 5. Only
periods with at least 10% standard deviation values above the average
were tested. The variables that were considered are the variables that
change inconsistently over the day, these variables are the AOD, wind
speed, wind direction. Table 11 shows the performance of the different
radiation variables across all the models when tested under high
variability periods. As can be seen from Table 11, the MLP and Decision
Tree models are the most robust models during high variability periods.

6. Conclusion

An hour ahead solar forecasting model based on new features
scheme for GHI/DNI/DHI was introduced in this work. The new

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

200

300

400

500

600

700

R
ad

ia
tio

n 
(W

/m
^2

)

DHI
DNI
GHI

Fig. 17. MLP sensitivity under different AOD values for GHI, DNI and DHI.

Table 9
RMSE results (W/m )2 for (GHI/DNI/DHI) models under different training and
testing splitting ratios averaged using all methods.

Split Ratio (training/testing) Radiation Variables

GHI DNI DHI

85/15 47.44 71.68 29.93
80/20 43.75 70.60 30.14
75/25 44.60 71.62 31.14

Table 10
RMSE results (W/m )2 for all methods under low and high AOD values.

Radiation Variables AOD Range Method

MLP kNN SVR Decision Tree

GHI AOD≤ 0.5 25.28 31.90 52.42 41.72
AOD > 0.5 43.43 56.47 66.46 59.52

DNI AOD≤ 0.5 51.43 65.86 67.49 74.13
AOD > 0.5 67.27 90.46 73.77 81.19

DHI AOD≤ 0.5 21.25 26.49 35.37 25.72
AOD > 0.5 27.97 36.92 35.99 39.37
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introduced features are fed into an hour-ahead solar forecasting models,
these models are all data driven models. The introduced features are,
the ground observed AOD at 550 nm observed at the last hour and the
angstrom exponent, alongside with other meteorological variables as
shown in Table 1. The solar forecasting model was constructed using
real data gathered from three different resources, KACARE, AERONET
and CAMS over three years period and one-hour temporal resolution.
The MLP solar forecasting model was tested and compared alongside
with SVR, kNN and decision tree regression. Results indicated that the
MLP model outperformed all of the other forecasting models with and
without the addition of the new proposed features. However, the ad-
dition of the proposed features improved all of the GH/DNI/DHI fore-
casting models significantly. The best performing forecasting model
was the MLP with RMSE of 32.75 (W/m )2 and FS of 42.10% for the GHI
forecasting model, RMSE of 63.36 (W/m )2 and FS of 38.12% for the DNI
forecasting model, RMSE of 23.90 (W/m )2 and FS of 42.52 for the DHI
forecasting model. On average, a high improvement was observed when
the new set of features were added to the DNI model, this is related to
the fact that DNI very sensitive to AOD values as shown in Fig. 14.
Moreover, the DNI is 3–4 times more sensitive to AOD values when
compared to the GHI under clear sky conditions (Gueymard, 2012). In
addition, the tested site is considered a high turbidity site (i.e. high
AOD values all over the year) (Ruiz-Arias et al., 2016a, 2016b) com-
pared to other sites in the worlds, hence, the utilization of the new set of
features in the forecasting models would assist the models’ overall
performance and increase the accuracy significantly as presented in

Tables 6–8.
Possible future directions to improve the work would revolve

mainly around the extension of the time horizon into a few hours
ahead, then study the effect of the new proposed features under this
extended time horizon. Moreover, the time horizon could be extended
into a day ahead, since AOD caused by the sand storms would usually
stay in the air for a couple of days, hence, the observation of the AOD at
the previous day would be beneficial for the next day irradiance fore-
cast.

In summary, the proposed model can benefit grid operators, espe-
cially in areas where the dust storms have frequent presence and the
AOD is high (> 0.4) all over the year.
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