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Abstract—This paper proposes to use discrete Fourier trans-
form (DFT) and discrete wavelet transform (DWT) methods to
schedule grid-scale energy storage systems to mitigate wind power
forecast error impacts while considering energy storage prop-
erties. This is accomplished by decomposing the wind forecast
error signal to different time-varying periodic components to
schedule sodium sulfur (NaS) batteries, compressed air energy
storage (CAES), and conventional generators. The advantage of
signal processing techniques is that the resultant decomposed
components are appropriate for cycling of each energy storage
technology. It is also beneficial for conventional generators, which
are more efficient to operate close to rated capacity. The tradeoff
between installing more energy storage units and decreasing the
wind spillage, back-up energy, and the standard deviation of resid-
ual forecast error signal is analyzed. The NaS battery life cycle
analysis and CAES contribution on increasing NaS battery life-
time are studied. The impact of considering the frequency bias
constant to allow small frequency deviations is also investigated.
To showcase the applicability of the proposed approach, a simu-
lation case study based on a real-world 5-min interval wind data
from Bonneville Power Administration (BPA) in 2013 is presented.

Index Terms—Back-up energy, discrete Fourier transform
(DFT), discrete wavelet transform (DWT), frequency bias
constant, grid-scale energy storage, life cycle analysis, wind power
forecast error, wind spillage.

I. INTRODUCTION

H IGH WIND penetration is a potential future scenario
that can result from various energy and environmental

policies. Denmark, Portugal, and Spain are the top three coun-
tries with the highest percentage of electricity production from
wind farms [1]. In Denmark, wind power provided 33.2% of
its annual electricity consumption in 2013 and is expected to
reach 50% by 2020 and 100% by 2035 [1], [2]. U.S. annual
wind generation in 2012 was 3.5% [1]. “In Texas, wind power
is approaching 10% of the state’s total electricity generation.
Iowa is producing 25% of its power from wind, and overall,
nine states obtain 10% or more of their electricity from wind
energy” [1].
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High level of uncertainty in wind power output results in
wind power forecast errors. Solutions to overcome this uncer-
tainty may include improvement in wind forecasting, use of
subhourly scheduling, increase in system reserve, deployment
of energy storage technologies, or some combinations thereof.
Energy storage can absorb excess wind power when the actual
wind power output is more than the forecasted one. It can also
inject required power when the actual wind power output is less.
Proper sizing of energy storage can help reduce the spillage of
excess wind energy and avoid paying a penalty when there is
wind energy deficiency.

In the literature, sizing of energy storage units is solved
by optimization approaches considering investment, operation,
and penalty costs [3]–[8] to maximize the revenue or smooth
the output power. Energy storage sizing to allow the combined
wind and storage output meet the predicted hour-ahead or day-
ahead power output has been addressed in [9]–[12]. Variety
of heuristic optimization methods [13], [14] and game theory
approaches [15], [16] have been used to solve the energy stor-
age sizing problem in a system with high wind penetration.
Sizing energy storage based on pre- and postcompensation to
minimize hourly wind forecast error energy is studied in [17].
Sizing Li-ion batteries based on statistical analysis of wind
power forecast error is studied in [18].

Hybrid energy storage sizing can be solved by signal process-
ing approaches, which are based on the concept that the efficient
operation of energy storage or conventional units depends on
their cycling. This is the advantage of signal processing tech-
niques that extract control signals with appropriate cycling
for a specific type of energy storage technology. The discrete
Fourier transform (DFT) to mitigate wind power forecast error
is proposed in [19]. Planning of energy storage and diesel gen-
erator capacities based on DFT to supply a load in a microgrid
with wind integration has been addressed in [20]. Discrete
wavelet transform (DWT) was used for data filtering of day-
ahead electricity price forecasting in [21]. DWT has also been
used to control storage for smoothing the fluctuation of wind
farm output [23]. Comparing signal processing techniques has
been studied for islanding detection in [23], but not for energy
storage sizing.

The energy storage sizing to mitigate wind forecast error
using DFT and DWT methods is discussed in this paper. The
wind power forecast error signal is decomposed into intra-hour,
intra-day, and slow-cycling components. The intra-hour and
intra-day components are time-varying periodic components
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with zero total energy, which are suitable to control sodium sul-
fur (NaS) battery and compressed air energy storage (CAES),
respectively. NaS is a chemical energy storage with no bar-
rier to switch between charge and discharge modes, with high
ramp rate. Hence, it is a good candidate for intra-hour compo-
nent. However, the limited life cycle of NaS battery will limit
how frequently this battery can be charged or discharged. On
the other hand, CAES is a mechanical energy storage device
that has larger rated energy capacity compared to NaS. This
is a good candidate for intra-day component. The idle time to
switch between charge and discharge modes is 20 min, which
limits its flexibility of operation. The slow-cycling component
is supposed to be supplied by conventional generators, which
are more efficient while operating at high mean generation
level.

The contributions and advantages of the proposed method
in this paper compared with other existing signal process-
ing techniques in [19], [20], and [22] are summarized as
follows.

1) Considering the detailed properties of each energy stor-
age technology: These properties include ramp rate, idle
time for CAES to switch between charge and discharge
modes, and maximum and minimum state of charge
(SoC), in addtion to efficiency and rated power and energy
capacity.

2) Choosing a specific wavelet function for DWT: The
wavelet function in [22] is chosen based on correla-
tion with the net load signal. Haar wavelet function is
selected in this paper because this step-shape wavelet
function results in intra-day components that are constant
for a specific duration. This characteristic is convenient to
schedule mechanical energy storage units as CAES. DFT
and DWT with other non-Haar wavelet functions change
the control command at every time interval, which is too
frequent for the CAES unit to operate.

3) Analyzing the impacts of energy storage by different sce-
narios: The results presented in [19], [20], and [22] are
required rated power and energy capacity that fully com-
pensate the decomposed components, even the infrequent
ones. This paper analyzes the impacts of different combi-
nations of energy storage units on reducing wind spill,
back up energy, and standard deviation of the residual
forecast error signal. Back-up energy is total additional
energy provided by thermal or hydro generators to make
up for the generation shortage.

4) Calculating the service life of NaS: The battery service
life is very important in long-term planning. The impact
of increasing the number of energy NaS and CAES units
on NaS life cycle is investigated in this paper.

5) Considering frequency bias constant: This factor can alle-
viate the wind power forecast error impacts. It allows
small frequency deviation (0.1 Hz) from 60 Hz to reduce
wind spill and back-up energy.

This paper is organized as follows. Sections II and III
describe the methodology and the storage sizing algorithm,
respectively. The case study and discussion are presented in
Section V.

II. DFT AND DWT ANALYSIS

A. DFT Analysis

DFT analysis changes time domain to frequency domain with
sinusoidal basic function. First, DFT of the signal is derived as
shown in (1), and then it is passed through high-pass, band-
pass, and low-pass filters to get different components. Finally,
the resultant components are converted into the time domain
using inverse DFT as follows:

Xk =

N−1∑
n=0

xn . e−i2πkn/N , k ∈ Z (1)

xn =
1

N

N−1∑
n=0

Xk . ei2πkn/N , n ∈ Z. (2)

B. DWT Analysis

DWT changes the signal domain to time-frequency plane by
scaling and shifting the basic wavelet function. The set of basic
wavelet function is defined as [24]

Ψj,k,t =
1√
2j

Ψ

(
t− k2j

2j

)
(3)

where Ψ is the wavelet function, 2j is the scaling factor of t, and
k2j is the translation in t. The factor 2j/2 maintains the norm
of the wavelet at different scales. The Haar wavelet function is
described in the following [24]:

ΨHaar,t =

⎧⎪⎨
⎪⎩

1, if 0 < t < 0.5

−1, if 0.5 < t < 1

0, otherwise.

(4)

In this paper, the DWT decomposition with Haar wavelet
function is used among other wavelet functions. Hence, the
decomposed signals are shifted and scaled version of Haar
wavelet function which is step-shape and constant for each
half period as (4). This characteristic may be desirable to con-
trol large-scale mechanical energy storage unit with barriers to
switch between operation modes frequently. A signal can have
the representation seen in the following [24]:

ft =
∑
j,k

aj,kΨj,k,t (5)

where the two-dimensional (2-D) coefficient aj,k is called
DWT of ft. It is calculated by inner products as follows [24]:

aj,k = 〈Ψj,k,t, ft〉 . (6)

The signal is decomposed into approximate and detailed
signals as follows [24]:

ft = An,t +

n∑
j=1

Dj,t (7)
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where

An,t approximate signal at nth level decomposition at time t;
Dj,t detailed signal at jth level decomposition (j = 1, . . . , n)

at time t;
n level of DWT decomposition.

III. ENERGY STORAGE SIZING ALGORITHM

The difference between wind power and its hour-ahead fore
cast represents the wind power forecast error as follows:

pwfe,t = paw,t − pfw,t ∀t (8)

where

pwfe,t wind power forecast error signal at time t;
paw,t actual wind power signal at time t;
pfw,t forecasted wind power signal at time t.

The wind power forecast error is formulated in an area
control error (ACE) as expressed in (9) [19]. The balanc-
ing authority is expected to return ACE to zero by utilizing
contingency reserve to compensate for the error

−ACE = −(Ia − Is) + 10β(fa − fs) (9)

where

Ia actual interchange in MW;
Is scheduled interchange in MW;
fa actual system frequency in Hz;
fs scheduled system frequency in Hz;
β system frequency bias constant in MW/0.1 Hz.

The frequency bias constant allows the incorporation of inter-
mittent renewable energy sources into a power system with a
small frequency deviation of up to 0.1 Hz. Many balancing
authorities take a simple approach and calculate this as 1%
of the forecasted peak load of the year [24]. Consequently,
a 100-MW [1% of Bonneville Power Administration (BPA)
2013 peak load] power mismatch in the system can be allowed
according to frequency bias constant.

The detailed energy storage sizing algorithms for DWT and
DFT methods are defined as follows.

A. Energy Storage Sizing Algorithm Based on DWT

Step 1) Find pwfe,t as described in (8).
Step 2) Decompose pwfe,t using Haar as a wavelet function

to approximate and detailed signals as shown in (7).
The period of jth detailed signal is 2j times the data
time resolution. The duration of its constant com-
mand is 2j−1 times the data time resolution. The
approximate signal with n-level of decomposition
is constant for 2n times the data time resolution.
Hence, the level of DWT decomposition is chosen to
be 8, which results in an approximate signal chang-
ing every 21 h and 20 min. This decomposition level
keeps the period of detailed signals less than a day.
As a result, intra-hour and intra-day components are
extracted from the detailed signals with 8-level of
decomposition.

TABLE I
DFT METHODOLOGY FILTERS

Step 3) Derive high-, medium-, and low-frequency
decompo sed signals as intra-hour, intra-day,
and slow-cycling components, respectively, as
expressed in the following:

phf,t =

3∑
j=1

Dj,t (10)

pmf,t =

8∑
j=4

Dj,t (11)

plf,t = A8,t. (12)

phf,t is the high frequency or intra-hour component
as shown in (10). As shown, it is the summation
of first to third detailed signals. It changes every
5 min and its period is 40 min, which is less than
an hour. This signal is appropriate to control large-
scale batteries, such as NaS, that has high ramp rates
and less energy capacity compared to CAES. pmf,t

is the medium frequency or intra-day component as
defined in (11). This signal changes every 40 min
and its period is 21 h and 20 min, which is less
than a day. Hence, it is a good candidate for intra-
day component to charge and discharge mechanical
large-scale energy storage units as CAES. plf,t is
the low frequency or slow-cycling component that
changes every 21 h and 20 min as shown in (11). This
can be easily followed by conventional generators.

B. Energy Storage Sizing Algorithm Based on DFT

Step 1) Find pwfe,t as described in (8).
Step 2) Find the DFT of pwfe,t to project the signal from time

domain to frequency domain using (1).
Step 3) Use the high pass, band pass, and low pass filters,

as described in Table I, to extract high-, medium-,
and low-frequency components. Cut-off frequencies
were chosen to match the DWT method. Hence, the
results of the two methodologies can be compared
and the tradeoff can be discussed.

Step 4) Take the inverse DFT of the decomposed compo-
nents in the previous step and change them from
frequency domain to time domain using (2).

C. Applying Large-Scale Energy Storage Properties

Each energy storage technology has its own operating limits.
These characteristics are shown in Table II for NaS and CAES.
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TABLE II
ENERGY STORAGE TECHNOLOGIES CHARACTERISTICS [26], [27]

In particular, CAES needs at least 20 min to remain idle for
switching between modes [26].

In the literature [19], [20], and [22], the sizing based on
signal processing approach neglects all energy storage charac-
teristics. Hence, the rated power and energy capacity are sized
to follow the components completely as follows:

P = max (|ct|) (13)

SoCt =

t∑
i=1

ci ∀t (14)

E = max(SoCt)−min(SoCt) (15)

where

ct decomposed component at time t in MW;
P rated power capacity in MW;
SoCt state of charge at time t in MW;
E rated energy capacity in MWh.

This paper considers energy storage characteristics that pre-
vent energy storage to closely follow the control signal. The
intra-day component controls CAES operation. NaS battery fol-
lows the intra-hour component and also the difference between
CAES output and the intra-day component. The detailed steps
of the algorithm are described as follows.

Step 1) Consider medium frequency (intra-day) signal to
control CAES operation

pt = pmf,t ∀t (16)

where ptis the energy storage operation at time t in
MW.

Step 2) Set t = 1 to start scheduling. This paper has consid-
ered the initial state of the charge before running the
simulation to be 50% of the full energy capacity.

Step 3) Operational power limit: The charge and discharge
power of energy storage is limited to its rated power
capacity

if |pt| > PrN, then pt = sign(pt)PrN (17)

where

Pr rated energy storage power capacity;
N number of energy storage units.

Step 4) Ramp rate limit: When t > 1

rt = (pt − pt−1)/Δt (18)

if |rt| > RrN, then pt = pt + sign(rt)RrN (19)

where

rt energy storage ramp rate at time t in
MW/min;

Rr rated ramp rate in MW/min.

Step 5) Remain idle for switching between charging and
discharging modes (this is only applicable to CAES)

if ptpt−1 < 0, then pk = 0, k ∈ [t, t+ idletime]. (20)

Step 6) State of the charge limit

SoCt =

{
(ptηΔt)/Er + SoCt−1, if pt > 0

(ptΔt)/Er + SoCt−1, if pt < 0
(21)

if SoCt > SoCmax, then

SoCt = SoCmax, pt = Er(SoCt − SoCt−1)/(ηΔt)
(22)

if SoCt < SoCmin, then

SoCt = SoCmin, pt = Er(SoCt − SoCt−1)/Δt
(23)

where

SoCmin minimum state of charge in %;
SoCmax maximum state of charge in %;
Er rated energy capacity in MWh;
η efficiency in %.

Step 7) Check if the simulation has reached the end:
If t < T , then, t = t+ 1, go to Step 3), else, pC,t =
pt ∀t and go to Step 8) where

T whole period of simulation;
pC,t CAES operation at time t in MW.

Step 8) NaS battery is supposed to provide the high-
frequency (intra-hour) component and the difference
between CAES operation and medium-frequency
component as follows:

pt = phf,t + (pmf,t − pC,t) ∀t (24)

where pt is the NaS control signal at time t in MW.
Step 9–12) Be the same as Steps 2)–6) except for Step 5).
Step 13) Check if the simulation has reached the end:

If t < T , then, t = t+ 1, go to Step 9), else, pN,t =
pt ∀t and go to Step 14). where pN,t is the NaS
operation at time t in MW.

Step 14) Calculating wind spill and back-up energy: The
residual forecast error signal is defined in (25). It
is the difference between summation of high- and
medium-frequency components with the summation
of NaS and CAES operation. The wind spill and
back-up energy are defined as positive and nega-
tive parts of this signal, respectively, shown in (26)
and (27):

pr,t = phf,t + pmf,t − (pN,t + pC,t) (25)

pws,t = (|pr,t|+ pr,t) /2 (26)

prs,t = (|pr,t| − pr,t) /2 (27)
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Fig. 1. NaS battery number of cycles to failure with respect to DoD [31].

where
pr,t residual power at time t in MW;
pws,t wind spill power at time t in MW;
prs,t back-up power at time t in MW.

IV. BATTERY LIFE CYCLE ANALYSIS

When batteries are used to mitigate renewable generation
challenges, they cycle frequently to keep up with renewable
ramp rates and mitigate the forecast error. Battery service life
depends on cycles at each depth of discharge (DoD). Cycle
counting has different methods as described in ASTM E 1049-
85 [28]. This paper uses rain-flow cycle counting, which was
first proposed by Downing and Socie [29] and mentioned in
ASTM E 1049-85. The number of cycles at each depth of dis-
charge including complete and partial cycles is the result of this
algorithm.

To study the impact of cycles on battery service life, first
DoD is divided to m interval. Then, the number of cycles in
a year for each range of DoD is extracted from NaS opera-
tion derived from algorithms in Section III by implementing
rain-flow cycle counting method. Finally, the battery lifetime in
years is calculated from number of cycles and number of cycles
to failure at each DoD as follows [30]:

LifeNaS = 1/

m∑
i=1

Ni/CFi (28)

where

LifeNaS NaS battery lifetime in years;
Ni number of cycles at each DoD;
CFi number of cycles to failure at each DoD;
m number of DoD ranges.

The number of cycles to failure at each DoD for NaS battery
is depicted in Fig. 1. As shown, cycles with higher DoD have
more impacts on battery lifetime depreciation than cycles with
lower DoD.

V. CASE STUDY AND DISCUSSION

The forecast error is determined by the actual and hour-ahead
wind forecast data with 5-min interval of the BPA area in 2013
[32]. Since wind power forecast errors are not repetitive over

Fig. 2. BPA wind power forecast error of BPA for the whole year of 2013.

Fig. 3. BPA wind power forecast error histogram for 2013.

TABLE III
WIND POWER FORECAST ERROR SIGNAL CHARACTERISTICS

Fig. 4. Forecast error and DWT components for a day in January 2013.

multiple years, such analyses need to be repeated over many
years to get a broader understanding of wind power output char-
acteristics for a particular service area. The BPA-installed wind
capacity was 4.5 GW in 2013. The wind power forecast error
signal is shown in Fig. 2 for the whole year of 2013. The nor-
malized histogram of this signal and the normal distribution
function that fits are depicted in Fig. 3. The wind power forecast
error signal characteristics are summarized in Table III.

The intra-hour, intra-day, and slow-cycling components of
wind power forecast error signal are extracted and shown in
Figs. 4 and 5 by DWT and DFT, respectively. As shown, the
time resolution of the signal processing technique is 5-min—
the same as time resolution of the wind power forecast data.
This time resolution seems good enough for subhourly dispatch
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Fig. 5. Forecast error and its DFT components for a day in January 2013.

TABLE IV
DWT AND DFT COMPONENTS CHARACTERISTICS

TABLE V
DWT AND DFT SIZING RESULTS BASED ON THE LITERATURE APPROACH

(5-min dispatch) of grid-scale energy storage technologies
as NaS and CAES. The difference between DFT and DWT
methodologies is the shape of decomposed components. The
properties of decomposed components are shown in Table IV.
As shown, the mean values of the intra-hour and intra-day com-
ponents are zero, which is desirable to control energy storage.
The mean of slow-cycling components are equal to the wind
forecast error mean shown in Table III.

According to three sigma rule, 99% of the time the value
of the intra-day component is between ±573MW for DWT
method and ±546MW for DFT method. The statistical sizing
approach based on three sigma rule results in four 50-MW NaS
and two 300-MW CAES (based on the numbers presented in
Table IV). Also, 99% of the time the value of intra-hour compo-
nent is between ±201MW for the DWT method and ±138MW
for the DFT method. Hence, based on this statistical evalua-
tion, four and three 50-MW NaS are required for DWT and
DFT methods, respectively. This statistical evaluation neglects
all the operational energy storage limits except for rated power
capacity, and only based on standard deviation of components.

The required energy storage based on [19], [20], and [22] is
shown in Table V. According to the results shown in Table V,
twenty 50-MW NaS and 300-MW CAES are required to fol-
low the intra-hour and intra-day components, respectively. This
approach results in oversizing energy storage units compared

Fig. 6. Standard deviation of the residual forecast error by DWT and DFT.

Fig. 7. Wind spill energy by DWT and DFT methods.

Fig. 8. Back-up energy by DWT and DFT methods.

to statistical approach, because of neglecting statistical charac-
teristics of components and fully following even the infrequent
values. The resultant size of energy storage units cannot even
fully compensate control signals due to neglecting all energy
storage operational barriers.

This paper approaches energy storage sizing by studying
the impacts of different combinations of NaS and CAES on
reducing wind spill and required back-up energy. Algorithms
defined in Section III are used to simulate 25 different scenar-
ios by varying number of 300 MW CAES and 50 MW NaS
units from zero to four. The standard deviation, wind spillage,
and required back-up energy are depicted in Figs. 6–8. As one
can observe, the slopes in these figures decrease by increas-
ing the size of energy storage units and becomes horizontal at
the end. This observation proves the sufficient number of sce-
narios. DFT and DWT results are shown in white and colored
surfaces, respectively. Since DFT components are not restricted
to be constant for a specific duration compared to DWT by
Haar wavelet function, DFT results have better performance
than DWT results.
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Fig. 9. NaS lifetime in years by DFT and DWT methods.

Standard deviation decreases from 202 to 70 MW for DWT
by implementing four NaS and CAES units as shown in Fig. 6.
It also decreases from 187 to 66 MW for DFT by implementing
four NaS and CAES units. As shown, the standard deviation
decrease becomes less by increasing energy storage units and
the surface becomes flat eventually.

Wind spill energy reduces from 600 to 11 GWh for DWT
method by increasing the number of energy storage units, as
shown in Fig. 7. It also reduces from 600 to 4 GWh for DFT
method by increasing the number of energy storage units. The
required back-up energy decreases from 600 to 198 GWh for
DWT method and reduces to 178 GWh for DFT approach, as
shown in Fig. 8. The reason why back-up energy reduction is
less than wind spill energy reduction is because of considering
energy storage efficiency. Hence, the storage is able to charge
the excess wind energy, but it cannot discharge as required. The
slope of surfaces decreases and becomes flat by increasing the
number of energy storage units.

The impact of energy storage size on the NaS battery lifetime
is analyzed and shown in Fig. 9. The cycle counting and battery
lifetime estimation is very important for planning large-scale
batteries. According to the results, by increasing the number
of NaS battery units, their lifetime increases. This is due to
increasing the energy capacity of the total batteries. Hence,
there is less number of cycles at each range of DoD. This num-
ber increases from 16 to 20 years for DWT, and 12 to 18 years
for the DFT method by increasing the number of NaS bat-
tery units from one to four while considering no CAES units.
When implementing CAES, NaS battery lifetime increases. It
increases from 16 to 23 years when the number of CAES units
increases from zero to four, while having one NaS for DWT
method. This number changes from 12 to 30 years for DFT
method. Hence, the NaS battery lifetime increases by CAES
contribution, which can follow intra-day component. NaS bat-
tery lifetime increases from 16 to 30 years for DWT and 12
to 35 years for DFT, while increasing the CAES units from
zero to four and NaS units from one to four. This result is very
beneficial for calculating the net present value of battery invest-
ment for a long-time project by knowing the number of battery
replacements during the whole project.

The impact of considering 100 MW frequency bias constant
on reducing the wind power forecast error impacts are shown in
Figs. 10–12. This 100 MW allowable mismatch is considered
for the residual of wind power forecast error after implement-
ing energy storage units. As shown in Fig. 10, the standard
deviation of wind power forecast error without implementing

Fig. 10. Standard deviation of the residual forecast error considering frequency
bias constant for DWT/DFT.

Fig. 11. Wind spill energy considering frequency bias constant for DWT/DFT.

Fig. 12. Back-up energy considering frequency bias constant for DWT/DFT.

energy storage is 145 MW for DWT and 131 MW for DFT,
which was about 200 MW before considering frequency bias
constant. It will reduce to 48 MW for DWT and 46 MW for
DFT by implementing four CAES and NaS units. As shown
in Fig. 11, wind spill energy without energy storage is 320
GWh for DWT and 275 GWh for DFT method. As shown in
Fig. 12, the required back-up energy considering frequency
bias constant is 300 GWh for DWT and 267 GWh for DFT.
Hence, by considering the frequency bias constant, wind spill
and required back-up energy decreases about 300 GWh for the
no-storage case.

VI. CONCLUSION

This paper proposes and compares two signal processing
methods (based on DFT and DWT) to schedule hybrid config-
uration of energy storage technologies (e.g., NaS battery and
CAES) and conventional generators. The defined DWT method
results in step-shape components, which are more appropri-
ate for controlling large-scale mechanical energy storage units
that cannot change their output frequently. Hence, scheduling
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based on DWT results in more wind spillage and requires more
back-up energy compared to DFT method that varies every
interval.

The proposed approach is based on analyzing the impacts
of increasing the number of energy storage units on reduc-
ing wind spillage and the required back-up energy. Also, the
standard deviation of the residual wind power forecast signal
is studied, which is an important factor for planning the extra
required system flexibility. This approach avoids oversizing
the required energy storage by implementing different com-
binations of energy storage units and analyzing their impacts.
Frequency bias constant is considered to reduce the final wind
spill and needed back-up energy.

The detailed properties of CAES and NaS units, including
efficiency, rated power and energy capacity, DoD (only applied
to NaS), and required idle time for switching between charging
and discharging modes (only applied to CAES) are considered.
NaS battery service life depends on the cycles at each DoD.
The NaS battery lifetime increases by adding more NaS and
CAES units.

The information provided in this paper is beneficial for
investors in energy storage and wind sectors. The overall energy
storage sizing depends on the economic issues of energy stor-
age operation, investment costs, and wind production tax credit
in addition to analyzing the technical issues.
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